Advertisement

On BPS bounds in D = 4 N = 2 gauged supergravity II: general matter couplings and black hole masses

  • Kiril HristovEmail author
Open Access
Article

Abstract

We continue the analysis of BPS bounds started in [1], extending it to the full class of N = 2 gauged supergravity theories with arbitrary vector and hypermultiplets. We derive the general form of the asymptotic charges for asymptotically flat (M4), anti-de Sitter (AdS4), and magnetic anti-de Sitter (mAdS4) spacetimes. Some particular examples from black hole physics are given to explicitly demonstrate how AdS and mAdS masses differ when solutions with non-trivial scalar profiles are considered.

Keywords

Black Holes in String Theory Supergravity Models Space-Time Symmetries 

References

  1. [1]
    K. Hristov, C. Toldo and S. Vandoren, On BPS bounds in D = 4 N = 2 gauged supergravity, JHEP 12 (2011) 014 [arXiv:1110.2688] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    K. Skenderis and P.K. Townsend, Gravitational stability and renormalization group flow, Phys. Lett. B 468 (1999) 46 [hep-th/9909070] [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  4. [4]
    M. Bianchi, D.Z. Freedman and K. Skenderis, How to go with an RG flow, JHEP 08 (2001) 041 [hep-th/0105276] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    I. Papadimitriou and K. Skenderis, Correlation functions in holographic RG flows, JHEP 10 (2004) 075 [hep-th/0407071] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    M. de Vroome and B. de Wit, Lagrangians with electric and magnetic charges of N = 2 supersymmetric gauge theories, JHEP 08 (2007) 064 [arXiv:0707.2717] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    B. de Wit and M. van Zalk, Electric and magnetic charges in N = 2 conformal supergravity theories, JHEP 10 (2011) 050 [arXiv:1107.3305] [INSPIRE].CrossRefGoogle Scholar
  8. [8]
    K. Hristov, H. Looyestijn and S. Vandoren, Maximally supersymmetric solutions of D = 4 N =2 gauged supergravity, JHEP 11 (2009) 115 [arXiv:0909.1743] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    L. Andrianopoliet al., N = 2 supergravity and N = 2 super Yang-Mills theory on general scalar manifolds: Symplectic covariance, gaugings and the momentum map, J. Geom. Phys. 23 (1997) 111 [hep-th/9605032] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. [10]
    B. de Wit and A. Van Proeyen, Potentials and symmetries of general gauged N = 2 supergravity: Yang-Mills models, Nucl. Phys. B 245 (1984) 89 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    B. de Wit, P. Lauwers, R. Philippe, S. Su and A. Van Proeyen, Gauge and matter fields coupled to N = 2 supergravity, Phys. Lett. B 134 (1984) 37 [INSPIRE].ADSGoogle Scholar
  12. [12]
    J. Derendinger, S. Ferrara, A. Masiero and A. Van Proeyen, Yang-Mills theories coupled to N = 2 supergravity: Higgs and super-Higgs effects in Anti-de Sitter space, Phys. Lett. B 136 (1984) 354 [INSPIRE].ADSGoogle Scholar
  13. [13]
    B. de Wit, P.G. Lauwers and A. Van Proeyen, Lagrangians of N = 2 supergravitymatter systems, Nucl. Phys. B 255 (1985) 569 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    R. D’Auria, S. Ferrara and P. Frè, Special and quaternionic isometries: general couplings in N = 2 supergravity and the scalar potential,Nucl. Phys. B 359 (1991) 705 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A. Ceresole, R. D’Auria and S. Ferrara, The symplectic structure of N = 2 supergravity and its central extension, Nucl. Phys. Proc. Suppl. 46 (1996) 67 [hep-th/9509160] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. [16]
    K. Behrndt, D. Lüst and W.A. Sabra, Stationary solutions of N = 2 supergravity, Nucl. Phys. B 510 (1998) 264 [hep-th/9705169] [INSPIRE].ADSGoogle Scholar
  17. [17]
    K. Hristov, H. Looyestijn and S. Vandoren, BPS black holes in N = 2 D = 4 gauged supergravities, JHEP 08 (2010) 103 [arXiv:1005.3650] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    J.M. Izquierdo, P. Meessen and T. Ortín, Bogomolnyi bounds in AdS, unpublished (1999).Google Scholar
  19. [19]
    W. Sabra, Anti-de Sitter BPS black holes in N = 2 gauged supergravity, Phys. Lett. B 458 (1999) 36 [hep-th/9903143] [INSPIRE].MathSciNetADSGoogle Scholar
  20. [20]
    L. Romans, Supersymmetric, cold and lukewarm black holes in cosmological Einstein-Maxwell theory, Nucl. Phys. B 383 (1992) 395 [hep-th/9203018] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    K. Hristov and S. Vandoren, Static supersymmetric black holes in AdS 4 with spherical symmetry, JHEP 04 (2011) 047 [arXiv:1012.4314] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    S.L. Cacciatori and D. Klemm, Supersymmetric AdS 4 black holes and attractors, JHEP 01 (2010) 085 [arXiv:0911.4926] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    G. Dall’Agata and A. Gnecchi, Flow equations and attractors for black holes in N = 2 U(1) gauged supergravity, JHEP 03 (2011) 037 [arXiv:1012.3756] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    A. Batrachenko, J.T. Liu, R. McNees, W. Sabra and W. Wen, Black hole mass and Hamilton-Jacobi counterterms, JHEP 05 (2005) 034 [hep-th/0408205] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    L. Abbott and S. Deser, Stability of gravity with a cosmological constant, Nucl. Phys. B 195 (1982) 76 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    D. Cassani and A.F. Faedo, Constructing Lifshitz solutions from AdS, JHEP 05 (2011) 013 [arXiv:1102.5344] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    N. Halmagyi, M. Petrini and A. Zaffaroni, Non-relativistic solutions of N = 2 gauged supergravity, JHEP 08 (2011) 041 [arXiv:1102.5740] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Institute for Theoretical Physics and Spinoza InstituteUtrecht UniversityUtrechtThe Netherlands
  2. 2.Faculty of PhysicsSofia UniversitySofiaBulgaria

Personalised recommendations