Moulting Black Holes

  • Iosif Bena
  • Borun D. Chowdhury
  • Jan de Boer
  • Sheer El-Showk
  • Masaki Shigemori
Open Access
Article

Abstract

We find a family of novel supersymmetric phases of the D1-D5 CFT, which in certain ranges of charges have more entropy than all known ensembles. We also find bulk BPS configurations that exist in the same range of parameters as these phases, and have more entropy than a BMPV black hole; they can be thought of as coming from a BMPV black hole shedding a “hair” condensate outside of the horizon. The entropy of the bulk configurations is smaller than that of the CFT phases, which indicates that some of the CFT states are lifted at strong coupling. Neither the bulk nor the boundary phases are captured by the elliptic genus, which makes the coincidence of the phase boundaries particularly remarkable. Our configurations are supersymmetric, have non-Cardy-like entropy, and are the first instance of a black hole entropy enigma with a controlled CFT dual. Furthermore, contrary to common lore, these objects exist in a region of parameter space (between the “cosmic censorship bound” and the “unitarity bound”) where no black holes were thought to exist.

Keywords

Black Holes in String Theory AdS-CFT Correspondence 

References

  1. [1]
    S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [INSPIRE].ADSGoogle Scholar
  2. [2]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    F. Denef and S.A. Hartnoll, Landscape of superconducting membranes, Phys. Rev. D 79 (2009) 126008 [arXiv:0901.1160] [INSPIRE].MathSciNetADSGoogle Scholar
  5. [5]
    S.S. Gubser, C.P. Herzog, S.S. Pufu and T. Tesileanu, Superconductors from Superstrings, Phys. Rev. Lett. 103 (2009) 141601 [arXiv:0907.3510] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    J.P. Gauntlett, J. Sonner and T. Wiseman, Holographic superconductivity in M-theory, Phys. Rev. Lett. 103 (2009) 151601 [arXiv:0907.3796] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    J.P. Gauntlett, J. Sonner and T. Wiseman, Quantum Criticality and Holographic Superconductors in M-theory, JHEP 02 (2010) 060 [arXiv:0912.0512] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    S. Bhattacharyya, S. Minwalla and K. Papadodimas, Small Hairy Black Holes in AdS 5 xS 5, JHEP 11 (2011) 035 [arXiv:1005.1287] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    J.P. Gauntlett and J.B. Gutowski, Concentric black rings, Phys. Rev. D 71 (2005) 025013 [hep-th/0408010] [INSPIRE].MathSciNetADSGoogle Scholar
  10. [10]
    F. Denef and G.W. Moore, Split states, entropy enigmas, holes and halos, JHEP 11 (2011) 129 [hep-th/0702146]. 149 pages, 21 figures [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    J. de Boer, F. Denef, S. El-Showk, I. Messamah and D. Van den Bleeken, Black hole bound states in AdS 3 × S 2, JHEP 11 (2008) 050 [arXiv:0802.2257] [INSPIRE].CrossRefGoogle Scholar
  12. [12]
    J.M. Maldacena, A. Strominger and E. Witten, Black hole entropy in M-theory, JHEP 12 (1997) 002 [hep-th/9711053] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    R. Minasian, G.W. Moore and D. Tsimpis, Calabi-Yau black holes and (0,4) σ-models, Commun. Math. Phys. 209 (2000) 325 [hep-th/9904217] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  14. [14]
    J. Breckenridge, R.C. Myers, A. Peet and C. Vafa, D-branes and spinning black holes, Phys. Lett. B 391 (1997) 93 [hep-th/9602065] [INSPIRE].MathSciNetADSGoogle Scholar
  15. [15]
    R. Dijkgraaf, J.M. Maldacena, G.W. Moore and E.P. Verlinde, A Black hole Farey tail, hep-th/0005003 [INSPIRE].
  16. [16]
    J. de Boer, Large-N elliptic genus and AdS/CFT correspondence, JHEP 05 (1999) 017 [hep-th/9812240] [INSPIRE].CrossRefGoogle Scholar
  17. [17]
    J.M. Maldacena, G.W. Moore and A. Strominger, Counting BPS black holes in toroidal Type II string theory, hep-th/9903163 [INSPIRE].
  18. [18]
    A. Dabholkar, M. Guica, S. Murthy and S. Nampuri, No entropy enigmas for N = 4 dyons, JHEP 06 (2010) 007 [arXiv:0903.2481] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    T. Eguchi, H. Ooguri and Y. Tachikawa, Notes on the K3 Surface and the Mathieu group M 24, Exper. Math. 20 (2011) 91 [arXiv:1004.0956] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  20. [20]
    H. Elvang, R. Emparan, D. Mateos and H.S. Reall, A Supersymmetric black ring, Phys. Rev. Lett. 93 (2004) 211302 [hep-th/0407065] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    I. Bena and N.P. Warner, One ring to rule them all … and in the darkness bind them?, Adv. Theor. Math. Phys. 9 (2005) 667 [hep-th/0408106] [INSPIRE].MathSciNetMATHGoogle Scholar
  22. [22]
    H. Elvang, R. Emparan, D. Mateos and H.S. Reall, Supersymmetric black rings and three-charge supertubes, Phys. Rev. D 71 (2005) 024033 [hep-th/0408120] [INSPIRE].MathSciNetADSGoogle Scholar
  23. [23]
    J.P. Gauntlett and J.B. Gutowski, General concentric black rings, Phys. Rev. D 71 (2005) 045002 [hep-th/0408122] [INSPIRE].MathSciNetADSGoogle Scholar
  24. [24]
    I. Bena and P. Kraus, Microscopic description of black rings in AdS / CFT, JHEP 12 (2004) 070 [hep-th/0408186] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    M. Cyrier, M. Guica, D. Mateos and A. Strominger, Microscopic entropy of the black ring, Phys. Rev. Lett. 94 (2005) 191601 [hep-th/0411187] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    I. Bena and N.P. Warner, Bubbling supertubes and foaming black holes, Phys. Rev. D 74 (2006) 066001 [hep-th/0505166] [INSPIRE].MathSciNetADSGoogle Scholar
  27. [27]
    P. Berglund, E.G. Gimon and T.S. Levi, Supergravity microstates for BPS black holes and black rings, JHEP 06 (2006) 007 [hep-th/0505167] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    N. Iizuka and M. Shigemori, A Note on D1 − D5-J system and 5 − D small black ring, JHEP 08 (2005) 100 [hep-th/0506215] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    A. Dabholkar, N. Iizuka, A. Iqubal and M. Shigemori, Precision microstate counting of small black rings, Phys. Rev. Lett. 96 (2006) 071601 [hep-th/0511120] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    L.F. Alday, J. de Boer and I. Messamah, What is the dual of a dipole?, Nucl. Phys. B 746 (2006) 29 [hep-th/0511246] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    A. Dabholkar, N. Iizuka, A. Iqubal, A. Sen and M. Shigemori, Spinning strings as small black rings, JHEP 04 (2007) 017 [hep-th/0611166] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    M. Shigemori, The Phases of D1-D5 CFTTowards Understanding Black Ring Microscopics, talk given at Massachusetts Institute of Technology, 10 October 2006.Google Scholar
  33. [33]
    J.R. David, G. Mandal and S.R. Wadia, Microscopic formulation of black holes in string theory, Phys. Rept. 369 (2002) 549 [hep-th/0203048] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  34. [34]
    S.G. Avery, B.D. Chowdhury and S.D. Mathur, Deforming the D1D5 CFT away from the orbifold point, JHEP 06 (2010) 031 [arXiv:1002.3132] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    S.G. Avery, B.D. Chowdhury and S.D. Mathur, Excitations in the deformed D1D5 CFT, JHEP 06 (2010) 032 [arXiv:1003.2746] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    S.G. Avery and B.D. Chowdhury, Intertwining Relations for the Deformed D1D5 CFT, JHEP 05 (2011) 025 [arXiv:1007.2202] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    A. Schwimmer and N. Seiberg, Comments on the N = 2, N = 3, N = 4 Superconformal Algebras in Two-Dimensions, Phys. Lett. B 184 (1987) 191 [INSPIRE].MathSciNetADSGoogle Scholar
  38. [38]
    V. Balasubramanian, J. de Boer, E. Keski-Vakkuri and S.F. Ross, Supersymmetric conical defects: Towards a string theoretic description of black hole formation, Phys. Rev. D 64 (2001) 064011 [hep-th/0011217] [INSPIRE].ADSGoogle Scholar
  39. [39]
    J.M. Maldacena and L. Maoz, Desingularization by rotation, JHEP 12 (2002) 055 [hep-th/0012025] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    S.D. Mathur, The Quantum structure of black holes, Class. Quant. Grav. 23 (2006) R115 [hep-th/0510180] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  41. [41]
    T. Eguchi, H. Ooguri, A. Taormina and S.-K. Yang, Superconformal Algebras and String Compactification on Manifolds with SU(N) Holonomy, Nucl. Phys. B 315 (1989) 193 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    T. Kawai, Y. Yamada and S.-K. Yang, Elliptic genera and N = 2 superconformal field theory, Nucl. Phys. B 414 (1994) 191 [hep-th/9306096] [INSPIRE].MathSciNetADSGoogle Scholar
  43. [43]
    R. Dijkgraaf, G.W. Moore, E.P. Verlinde and H.L. Verlinde, Elliptic genera of symmetric products and second quantized strings, Commun. Math. Phys. 185 (1997) 197 [hep-th/9608096] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  44. [44]
    A. Castro and S. Murthy, Corrections to the statistical entropy of five dimensional black holes, JHEP 06 (2009) 024 [arXiv:0807.0237] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    D. Mateos and P.K. Townsend, Supertubes, Phys. Rev. Lett. 87 (2001) 011602 [hep-th/0103030] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    F. Denef, Supergravity flows and D-brane stability, JHEP 08 (2000) 050 [hep-th/0005049] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    J.B. Gutowski and H.S. Reall, General supersymmetric AdS 5 black holes, JHEP 04 (2004) 048 [hep-th/0401129] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    I. Bena, P. Kraus and N.P. Warner, Black rings in Taub-NUT, Phys. Rev. D 72 (2005) 084019 [hep-th/0504142] [INSPIRE].MathSciNetADSGoogle Scholar
  49. [49]
    I. Bena, N. Bobev, C. Ruef and N.P. Warner, Supertubes in Bubbling Backgrounds: Born-Infeld Meets Supergravity, JHEP 07 (2009) 106 [arXiv:0812.2942] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    G. Gibbons and P. Ruback, The Hidden Symmetries of Multicenter Metrics, Commun. Math. Phys. 115 (1988) 267 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  51. [51]
    I. Bena, N. Bobev and N.P. Warner, Spectral Flow and the Spectrum of Multi-Center Solutions, Phys. Rev. D 77 (2008) 125025 [arXiv:0803.1203] [INSPIRE].MathSciNetADSGoogle Scholar
  52. [52]
    V. Balasubramanian, E.G. Gimon and T.S. Levi, Four Dimensional Black Hole Microstates: From D-branes to Spacetime Foam, JHEP 01 (2008) 056 [hep-th/0606118] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    I. Bena and P. Kraus, Three charge supertubes and black hole hair, Phys. Rev. D 70 (2004) 046003 [hep-th/0402144] [INSPIRE].MathSciNetADSGoogle Scholar
  54. [54]
    D. Marolf and A. Virmani, A Black hole instability in five dimensions?, JHEP 11 (2005) 026 [hep-th/0505044] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  55. [55]
    I. Bena, C.-W. Wang and N.P. Warner, Sliding rings and spinning holes, JHEP 05 (2006) 075 [hep-th/0512157] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  56. [56]
    G. Dall’Agata, S. Giusto and C. Ruef, U-duality and non-BPS solutions, JHEP 02 (2011) 074 [arXiv:1012.4803] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  57. [57]
    O. Lunin, J.M. Maldacena and L. Maoz, Gravity solutions for the D1 − D5 system with angular momentum, hep-th/0212210 [INSPIRE].
  58. [58]
    R. Gregory and R. Laflamme, Black strings and p-branes are unstable, Phys. Rev. Lett. 70 (1993) 2837 [hep-th/9301052] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  59. [59]
    J. Manschot, B. Pioline and A. Sen, A Fixed point formula for the index of multi-centered N =2 black holes,JHEP 05 (2011) 057 [arXiv:1103.1887] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  60. [60]
    J. de Boer, S. El-Showk, I. Messamah and D. Van den Bleeken, Quantizing N = 2 Multicenter Solutions, JHEP 05 (2009) 002 [arXiv:0807.4556] [INSPIRE].CrossRefGoogle Scholar
  61. [61]
    J. de Boer, S. El-Showk, I. Messamah and D. Van den Bleeken, A Bound on the entropy of supergravity?, JHEP 02 (2010) 062 [arXiv:0906.0011] [INSPIRE].CrossRefGoogle Scholar
  62. [62]
    S. Nakamura, H. Ooguri and C.-S. Park, Gravity Dual of Spatially Modulated Phase, Phys. Rev. D 81 (2010) 044018 [arXiv:0911.0679] [INSPIRE].ADSGoogle Scholar
  63. [63]
    H. Ooguri and C.-S. Park, Holographic End-Point of Spatially Modulated Phase Transition, Phys. Rev. D 82 (2010) 126001 [arXiv:1007.3737] [INSPIRE].ADSGoogle Scholar
  64. [64]
    A. Aperis, P. Kotetes, E. Papantonopoulos, G. Siopsis, P. Skamagoulis, et al., Holographic Charge Density Waves, Phys. Lett. B 702 (2011) 181 [arXiv:1009.6179] [INSPIRE].ADSGoogle Scholar
  65. [65]
    R. Flauger, E. Pajer and S. Papanikolaou, A Striped Holographic Superconductor, Phys. Rev. D 83 (2011) 064009 [arXiv:1010.1775] [INSPIRE].ADSGoogle Scholar
  66. [66]
    H. Ooguri and C.-S. Park, Spatially Modulated Phase in Holographic quark-gluon Plasma, Phys. Rev. Lett. 106 (2011) 061601 [arXiv:1011.4144] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  67. [67]
    C. Bayona, K. Peeters and M. Zamaklar, A Non-homogeneous ground state of the low-temperature Sakai-Sugimoto model, JHEP 06 (2011) 092 [arXiv:1104.2291] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    A. Donos and J.P. Gauntlett, Holographic striped phases, JHEP 08 (2011) 140 [arXiv:1106.2004] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    S. Takeuchi, Modulated Instability in Five-Dimensional U(1) Charged AdS Black Hole with R 2 -term, JHEP 01 (2012) 160 [arXiv:1108.2064] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Iosif Bena
    • 1
  • Borun D. Chowdhury
    • 2
  • Jan de Boer
    • 2
  • Sheer El-Showk
    • 1
  • Masaki Shigemori
    • 3
  1. 1.Institut de Physique Théorique, CEA Saclay, CNRS URA 2306Gif-sur-YvetteFrance
  2. 2.Institute for Theoretical PhysicsUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.Kobayashi-Maskawa Institute for the Origin of Particles and the UniverseNagoya UniversityNagoyaJapan

Personalised recommendations