FCNC portals to the dark sector

Open Access
Article

Abstract

The most general basis of operators parametrizing a low-scale departure from the SM particle content is constructed. The SM gauge invariance is enforced, and operators of lowest dimensions are retained separately for a new light neutral particle of spin 0, 1/2, 1, and 3/2. The basis is further decomposed into couplings to the SM Higgs/gauge fields, to pairs of quark/lepton fields, and to baryon/lepton number violating combinations of fermion fields. This basis is then used to systematically investigate the discovery potential of the rare FCNC decays of the K and B mesons with missing energy in the final state. The most sensitive decay modes in the s → d, b → d, and b → s sectors are identified and compared for each type of couplings to the new invisible state.

Keywords

Beyond Standard Model Rare Decays B-Physics Kaon Physics 

References

  1. [1]
    W. Buchmüller and D. Wyler, Effective Lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    S. Weinberg, Baryon and lepton nonconserving processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    F. Wilczek and A. Zee, Operator analysis of nucleon decay, Phys. Rev. Lett. 43 (1979) 1571 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    L. Abbott and M.B. Wise, The effective Hamiltonian for nucleon decay, Phys. Rev. D 22 (1980) 2208 [INSPIRE].ADSGoogle Scholar
  6. [6]
    R.D. Peccei, The strong CP problem and axions, Lect. Notes Phys. 741 (2008) 3 [hep-ph/0607268] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    J. Goldman and C. Hoffman, Will the axion be found soon?, Phys. Rev. Lett. 40 (1978) 220 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M.S. Turner, Windows on the axion, Phys. Rept. 197 (1990) 67 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    E. Masso, Axions and axion like particles, Nucl. Phys. Proc. Suppl. 114 (2003) 67 [hep-ph/0209132] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    M. Freytsis, Z. Ligeti and J. Thaler, Constraining the axion portal with B → K+, Phys. Rev. D 81 (2010) 034001 [arXiv:0911.5355] [INSPIRE].ADSGoogle Scholar
  11. [11]
    J. Jaeckel and A. Ringwald, The low-energy frontier of particle physics, Ann. Rev. Nucl. Part. Sci. 60 (2010) 405 [arXiv:1002.0329] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    R. Foot, H. Lew and R. Volkas, A model with fundamental improper space-time symmetries, Phys. Lett. B 272 (1991) 67 [INSPIRE].ADSGoogle Scholar
  13. [13]
    R. Schabinger and J.D. Wells, A minimal spontaneously broken hidden sector and its impact on Higgs boson physics at the Large Hadron Collider, Phys. Rev. D 72 (2005) 093007 [hep-ph/0509209] [INSPIRE].ADSGoogle Scholar
  14. [14]
    B. Patt and F. Wilczek, Higgs-field portal into hidden sectors, hep-ph/0605188 [INSPIRE].
  15. [15]
    J. March-Russell, S.M. West, D. Cumberbatch and D. Hooper, Heavy dark matter through the Higgs portal, JHEP 07 (2008) 058 [arXiv:0801.3440] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    M. Pospelov, A. Ritz and M.B. Voloshin, Secluded WIMP dark matter, Phys. Lett. B 662 (2008) 53 [arXiv:0711.4866] [INSPIRE].ADSGoogle Scholar
  17. [17]
    B. Batell, M. Pospelov and A. Ritz, Exploring portals to a hidden sector through fixed targets, Phys. Rev. D 80 (2009) 095024 [arXiv:0906.5614] [INSPIRE].ADSGoogle Scholar
  18. [18]
    C. Englert, T. Plehn, D. Zerwas and P.M. Zerwas, Exploring the Higgs portal, Phys. Lett. B 703 (2011) 298 [arXiv:1106.3097] [INSPIRE].ADSGoogle Scholar
  19. [19]
    F. Wilczek, Beyond the standard litany: LOSP and Higgs portals; lattice lattice gauge theory, PoS(EPS-HEP 2009)001 [arXiv:1003.4672] [INSPIRE].
  20. [20]
    A. Badin and A.A. Petrov, Searching for light dark matter in heavy meson decays, Phys. Rev. D 82 (2010) 034005 [arXiv:1005.1277] [INSPIRE].ADSGoogle Scholar
  21. [21]
    J. Kile and A. Soni, Flavored dark matter in direct detection experiments and at LHC, Phys. Rev. D 84 (2011) 035016 [arXiv:1104.5239] [INSPIRE].ADSGoogle Scholar
  22. [22]
    M. Artuso et al., B, D and K decays, Eur. Phys. J. C 57 (2008) 309 [arXiv:0801.1833] [INSPIRE].ADSGoogle Scholar
  23. [23]
    G. Isidori, Y. Nir and G. Perez, Flavor physics constraints for physics beyond the Standard Model, Ann. Rev. Nucl. Part. Sci. 60 (2010) 355 [arXiv:1002.0900] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    G. D’Ambrosio, G. Giudice, G. Isidori and A. Strumia, Minimal Flavor Violation: an effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    L. Hall and L. Randall, Weak scale effective supersymmetry, Phys. Rev. Lett. 65 (1990) 2939 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A. Buras, P. Gambino, M. Gorbahn, S. Jager and L. Silvestrini, Universal unitarity triangle and physics beyond the Standard Model, Phys. Lett. B 500 (2001) 161 [hep-ph/0007085] [INSPIRE].ADSGoogle Scholar
  27. [27]
    T. Hurth, G. Isidori, J.F. Kamenik and F. Mescia, Constraints on new physics in MFV models: a model-independent analysis of ΔF = 1 processes, Nucl. Phys. B 808 (2009) 326 [arXiv:0807.5039] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    G. Colangelo, E. Nikolidakis and C. Smith, Supersymmetric models with Minimal Flavour Violation and their running, Eur. Phys. J. C 59 (2009) 75 [arXiv:0807.0801] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    R. Zwicky and T. Fischbacher, On discrete Minimal Flavour Violation, Phys. Rev. D 80 (2009) 076009 [arXiv:0908.4182] [INSPIRE].ADSGoogle Scholar
  30. [30]
    Y. Grossman and Y. Nir, K L → π0ν ν beyond the Standard Model, Phys. Lett. B 398 (1997) 163 [hep-ph/9701313] [INSPIRE].ADSGoogle Scholar
  31. [31]
    E. Nikolidakis and C. Smith, Minimal Flavor Violation, seesaw and R-parity, Phys. Rev. D 77 (2008) 015021 [arXiv:0710.3129] [INSPIRE].ADSGoogle Scholar
  32. [32]
    C. Smith, Proton stability from a fourth family, Phys. Rev. D 85 (2012) 036005 [arXiv:1105.1723] [INSPIRE].ADSGoogle Scholar
  33. [33]
    C. Csáki, Y. Grossman and B. Heidenreich, MFV SUSY: a natural theory for R-parity violation, arXiv:1111.1239 [INSPIRE].
  34. [34]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSGoogle Scholar
  35. [35]
    Belle collaboration, K. Ikado et al., Evidence of the purely leptonic decay B τ ντ, Phys. Rev. Lett. 97 (2006) 251802 [hep-ex/0604018] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    Belle collaboration, K. Hara et al., Evidence for B → τ ν with a semileptonic tagging method, Phys. Rev. D 82 (2010) 071101 [arXiv:1006.4201] [INSPIRE].ADSGoogle Scholar
  37. [37]
    BABAR collaboration, B. Aubert et al., Search for B + → ℓ+ν recoiling against B D 0νX, Phys. Rev. D 81 (2010) 051101 [arXiv:0912.2453] [INSPIRE].ADSGoogle Scholar
  38. [38]
    BABAR collaboration, P. del Amo Sanchez et al., Evidence for B + → τ +ντ decays using hadronic B tags, arXiv:1008.0104 [INSPIRE].
  39. [39]
    A. Lenz et al., Anatomy of new physics in B- B mixing, Phys. Rev. D 83 (2011) 036004 [arXiv:1008.1593] [INSPIRE].ADSGoogle Scholar
  40. [40]
    V. Cirigliano and I. Rosell, Two-loop effective theory analysis of π(K) → eνe[γ] branching ratios, Phys. Rev. Lett. 99 (2007) 231801 [arXiv:0707.3439] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    V. Cirigliano and I. Rosell, π/K → eνe branching ratios to O(e 2 p 4 ) in chiral perturbation theory, JHEP 10 (2007) 005 [arXiv:0707.4464] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    NA62 collaboration, C. Lazzeroni et al., Test of lepton flavour universality in K + → ℓ+ν decays, Phys. Lett. B 698 (2011) 105 [arXiv:1101.4805] [INSPIRE].ADSGoogle Scholar
  43. [43]
    C. Malbrunot et al., The PIENU experiment at TRIUMF: a sensitive probe for new physics, J. Phys. Conf. Ser. 312 (2011) 102010 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    A.J. Buras, A. Romanino and L. Silvestrini, \( {\text{K}} \to \pi \nu \bar{\nu } \) : a model independent analysis and supersymmetry, Nucl. Phys. B 520 (1998) 3 [hep-ph/9712398] [INSPIRE].ADSGoogle Scholar
  45. [45]
    G. Isidori, F. Mescia, P. Paradisi, C. Smith and S. Trine, Exploring the flavour structure of the MSSM with rare K decays, JHEP 08 (2006) 064 [hep-ph/0604074] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    M. Blanke, A.J. Buras, B. Duling, S. Recksiegel and C. Tarantino, FCNC processes in the littlest Higgs model with T-parity: a 2009 look, Acta Phys. Polon. B 41 (2010) 657 [arXiv:0906.5454] [INSPIRE].Google Scholar
  47. [47]
    T. Goto, Y. Okada and Y. Yamamoto, Ultraviolet divergences of flavor changing amplitudes in the littlest Higgs model with T-parity, Phys. Lett. B 670 (2009) 378 [arXiv:0809.4753] [INSPIRE].ADSGoogle Scholar
  48. [48]
    A.J. Buras et al., Patterns of flavour violation in the presence of a fourth generation of quarks and leptons, JHEP 09 (2010) 106 [arXiv:1002.2126] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    W. Altmannshofer, A.J. Buras, D.M. Straub and M. Wick, New strategies for new physics search in \( B \to {K^{ * }}\nu \bar{\nu },{ }B \to K\nu \bar{\nu }\;and\;B \to {X_s}\nu \bar{\nu } \) decays, JHEP 04 (2009) 022 [arXiv:0902.0160] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    D. Gorbunov and M. Shaposhnikov, How to find neutral leptons of the νMSM?, JHEP 10 (2007) 015 [arXiv:0705.1729] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    Y. Kiyo, T. Morozumi and M. Tanimoto, Rare decay of K meson, hep-ph/9805307 [INSPIRE].
  52. [52]
    H. Dreiner et al., Rare meson decays into very light neutralinos, Phys. Rev. D 80 (2009) 035018 [arXiv:0905.2051] [INSPIRE].ADSGoogle Scholar
  53. [53]
    K. Rajagopal, M.S. Turner and F. Wilczek, Cosmological implications of axinos, Nucl. Phys. B 358 (1991) 447 [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    L. Covi, H.-B. Kim, J.E. Kim and L. Roszkowski, Axinos as dark matter, JHEP 05 (2001) 033 [hep-ph/0101009] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    A. Freitas, F.D. Steffen, N. Tajuddin and D. Wyler, Axinos in cosmology and at colliders, JHEP 06 (2011) 036 [arXiv:1105.1113] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    S. Davidson, S. Hannestad and G. Raffelt, Updated bounds on millicharged particles, JHEP 05 (2000) 003 [hep-ph/0001179] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    M. Goodsell, J. Jaeckel, J. Redondo and A. Ringwald, Naturally light hidden photons in large volume string compactifications, JHEP 11 (2009) 027 [arXiv:0909.0515] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    B. Holdom, Two U(1)’s and ǫ charge shifts, Phys. Lett. B 166 (1986) 196 [INSPIRE].ADSGoogle Scholar
  59. [59]
    F. Wilczek, Axions and family symmetry breaking, Phys. Rev. Lett. 49 (1982) 1549 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  60. [60]
    J.L. Feng, T. Moroi, H. Murayama and E. Schnapka, Third generation familons, b factories and neutrino cosmology, Phys. Rev. D 57 (1998) 5875 [INSPIRE].ADSGoogle Scholar
  61. [61]
    S. Weinberg, A new light boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    W.A. Bardeen, R. Peccei and T. Yanagida, Constraints on variant axion models, Nucl. Phys. B 279 (1987) 401 [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    J. Frère, J. Vermaseren and M. Gavela, The elusive axion, Phys. Lett. B 103 (1981) 129 [INSPIRE].ADSGoogle Scholar
  64. [64]
    K.A. Intriligator, N. Seiberg and D. Shih, Dynamical SUSY breaking in meta-stable vacua, JHEP 04 (2006) 021 [hep-th/0602239] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  65. [65]
    K.A. Intriligator, N. Seiberg and D. Shih, Supersymmetry breaking, R-symmetry breaking and metastable vacua, JHEP 07 (2007) 017 [hep-th/0703281] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  66. [66]
    T. Banks and H.E. Haber, Note on the pseudo-Nambu-Goldstone boson of meta-stable SUSY violation, JHEP 11 (2009) 097 [arXiv:0908.2004] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    G. Hiller, B physics signals of the lightest CP odd Higgs in the NMSSM at large tanβ, Phys. Rev. D 70 (2004) 034018 [hep-ph/0404220] [INSPIRE].MathSciNetADSGoogle Scholar
  68. [68]
    U. Ellwanger, C. Hugonie and A.M. Teixeira, The next-to-minimal supersymmetric Standard Model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  69. [69]
    S. Andreas, O. Lebedev, S. Ramos-Sanchez and A. Ringwald, Constraints on a very light CP-odd Higgs of the NMSSM and other axion-like particles, JHEP 08 (2010) 003 [arXiv:1005.3978] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    C. Bird, P. Jackson, R.V. Kowalewski and M. Pospelov, Search for dark matter in b → s transitions with missing energy, Phys. Rev. Lett. 93 (2004) 201803 [hep-ph/0401195] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    C. Bird, R.V. Kowalewski and M. Pospelov, Dark matter pair-production in b → s transitions, Mod. Phys. Lett. A 21 (2006) 457 [hep-ph/0601090] [INSPIRE].ADSGoogle Scholar
  72. [72]
    C. Kim, S.C. Park, K. Wang and G. Zhu, Invisible Higgs decay with \( B \to K\nu \bar{\nu } \) constraint, Phys. Rev. D 81 (2010) 054004 [arXiv:0910.4291] [INSPIRE].ADSGoogle Scholar
  73. [73]
    X.-G. He, S.-Y. Ho, J. Tandean and H.-C. Tsai, Scalar dark matter and Standard Model with four generations, Phys. Rev. D 82 (2010) 035016 [arXiv:1004.3464] [INSPIRE].ADSGoogle Scholar
  74. [74]
    A. Brignole, F. Feruglio and F. Zwirner, Four-fermion interactions and sgoldstino masses in models with a superlight gravitino, Phys. Lett. B 438 (1998) 89 [hep-ph/9805282] [INSPIRE].ADSGoogle Scholar
  75. [75]
    D. Gorbunov, Light sgoldstino: precision measurements versus collider searches, Nucl. Phys. B 602 (2001) 213 [hep-ph/0007325] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    D. Gorbunov and V. Rubakov, Kaon physics with light sgoldstinos and parity conservation, Phys. Rev. D 64 (2001) 054008 [hep-ph/0012033] [INSPIRE].ADSGoogle Scholar
  77. [77]
    P. Fayet, Extra U(1)’s and new forces, Nucl. Phys. B 347 (1990) 743 [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    M. Williams, C. Burgess, A. Maharana and F. Quevedo, New constraints (and motivations) for Abelian gauge bosons in the MeV-TeV mass range, JHEP 08 (2011) 106 [arXiv:1103.4556] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    K.R. Dienes, C.F. Kolda and J. March-Russell, Kinetic mixing and the supersymmetric gauge hierarchy, Nucl. Phys. B 492 (1997) 104 [hep-ph/9610479] [INSPIRE].ADSGoogle Scholar
  80. [80]
    S. Abel, M. Goodsell, J. Jaeckel, V. Khoze and A. Ringwald, Kinetic mixing of the photon with hidden U(1)’s in string phenomenology, JHEP 07 (2008) 124 [arXiv:0803.1449] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  81. [81]
    J. Kumar and J.D. Wells, CERN LHC and ILC probes of hidden-sector gauge bosons, Phys. Rev. D 74 (2006) 115017 [hep-ph/0606183] [INSPIRE].ADSGoogle Scholar
  82. [82]
    N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A theory of dark matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [INSPIRE].ADSGoogle Scholar
  83. [83]
    M. Baumgart, C. Cheung, J.T. Ruderman, L.-T. Wang and I. Yavin, Non-Abelian dark sectors and their collider signatures, JHEP 04 (2009) 014 [arXiv:0901.0283] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    A. Katz and R. Sundrum, Breaking the dark force, JHEP 06 (2009) 003 [arXiv:0902.3271] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    C. Cheung, J.T. Ruderman, L.-T. Wang and I. Yavin, Kinetic mixing as the origin of light dark scales, Phys. Rev. D 80 (2009) 035008 [arXiv:0902.3246] [INSPIRE].ADSGoogle Scholar
  86. [86]
    Y. Mambrini, The ZZkinetic mixing in the light of the recent direct and indirect dark matter searches, JCAP 07 (2011) 009 [arXiv:1104.4799] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    P. Fayet, Constraints on light dark matter and U bosons, from ψ, Υ, K + , π0 , η and \( {\eta^{\prime }} \) decays, Phys. Rev. D 74 (2006) 054034 [hep-ph/0607318] [INSPIRE].ADSGoogle Scholar
  88. [88]
    R. Essig, P. Schuster and N. Toro, Probing dark forces and light hidden sectors at low-energy e + e colliders, Phys. Rev. D 80 (2009) 015003 [arXiv:0903.3941] [INSPIRE].ADSGoogle Scholar
  89. [89]
    J.D. Bjorken, R. Essig, P. Schuster and N. Toro, New fixed-target experiments to search for dark gauge forces, Phys. Rev. D 80 (2009) 075018 [arXiv:0906.0580] [INSPIRE].ADSGoogle Scholar
  90. [90]
    M. Pospelov, Secluded U(1) below the weak scale, Phys. Rev. D 80 (2009) 095002 [arXiv:0811.1030] [INSPIRE].ADSGoogle Scholar
  91. [91]
    D.E. Morrissey, D. Poland and K.M. Zurek, Abelian hidden sectors at a GeV, JHEP 07 (2009) 050 [arXiv:0904.2567] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    M. Reece and L.-T. Wang, Searching for the light dark gauge boson in GeV-scale experiments, JHEP 07 (2009) 051 [arXiv:0904.1743] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    R. Essig, R. Harnik, J. Kaplan and N. Toro, Discovering new light states at neutrino experiments, Phys. Rev. D 82 (2010) 113008 [arXiv:1008.0636] [INSPIRE].ADSGoogle Scholar
  94. [94]
    P. Langacker and M. Plümacher, Flavor changing effects in theories with a heavy Z boson with family nonuniversal couplings, Phys. Rev. D 62 (2000) 013006 [hep-ph/0001204] [INSPIRE].ADSGoogle Scholar
  95. [95]
    P. Fayet, The fifth force charge as a linear combination of baryonic, leptonic (or B-L) and electric charges, Phys. Lett. B 227 (1989) 127 [INSPIRE].ADSGoogle Scholar
  96. [96]
    E. Dudas, Y. Mambrini, S. Pokorski and A. Romagnoni, (In)visible Z and dark matter, JHEP 08 (2009) 014 [arXiv:0904.1745] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    J.F. Kamenik and C. Smith, Could a light Higgs boson illuminate the dark sector?, arXiv:1201.4814 [INSPIRE].
  98. [98]
    F. Brummer, J. Jaeckel and V.V. Khoze, Magnetic mixing: electric minicharges from magnetic monopoles, JHEP 06 (2009) 037 [arXiv:0905.0633] [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    R. Peccei and H.R. Quinn, Constraints imposed by CP conservation in the presence of instantons, Phys. Rev. D 16 (1977) 1791 [INSPIRE].ADSGoogle Scholar
  100. [100]
    K. Babu, C.F. Kolda and J. March-Russell, Leptophobic U(1)’s and the R b -R c crisis, Phys. Rev. D 54 (1996) 4635 [hep-ph/9603212] [INSPIRE].ADSGoogle Scholar
  101. [101]
    A. Aranda and C.D. Carone, Limits on a light leptophobic gauge boson, Phys. Lett. B 443 (1998) 352 [hep-ph/9809522] [INSPIRE].ADSGoogle Scholar
  102. [102]
    M. Misiak et al., Estimate of \( B\left( {\bar{B} \to {X_s}\gamma } \right) \) at \( {\text{O}}\left( {\alpha_{\text{s}}^2} \right) \), Phys. Rev. Lett. 98 (2007) 022002 [hep-ph/0609232] [INSPIRE].ADSCrossRefGoogle Scholar
  103. [103]
    P. Mertens and C. Smith, The s → dγ decay in and beyond the Standard Model, JHEP 08 (2011) 069 [arXiv:1103.5992] [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    G. D’Ambrosio and G. Isidori, CP violation in kaon decays, Int. J. Mod. Phys. A 13 (1998) 1 [hep-ph/9611284] [INSPIRE].ADSGoogle Scholar
  105. [105]
    G. D’Ambrosio, G. Ecker, G. Isidori and J. Portoles, The decays K → πℓ+ beyond leading order in the chiral expansion, JHEP 08 (1998) 004 [hep-ph/9808289] [INSPIRE].CrossRefGoogle Scholar
  106. [106]
    J.-M. Gérard, C. Smith and S. Trine, Radiative kaon decays and the penguin contribution to the ΔI = 1/2 rule, Nucl. Phys. B 730 (2005) 1 [hep-ph/0508189] [INSPIRE].ADSCrossRefGoogle Scholar
  107. [107]
    M. Bolz, A. Brandenburg and W. Buchmüller, Thermal production of gravitinos, Nucl. Phys. B 606 (2001) 518 [Erratum ibid. B 790 (2008) 336] [hep-ph/0012052] [INSPIRE].ADSCrossRefGoogle Scholar
  108. [108]
    K. Johnson and E. Sudarshan, Inconsistency of the local field theory of charged spin 3/2 particles, Annals Phys. 13 (1961) 126 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  109. [109]
    G. Velo and D. Zwanziger, Propagation and quantization of Rarita-Schwinger waves in an external electromagnetic potential, Phys. Rev. 186 (1969) 1337 [INSPIRE].ADSCrossRefGoogle Scholar
  110. [110]
    G. Velo and D. Zwanziger, Noncausality and other defects of interaction Lagrangians for particles with spin one and higher, Phys. Rev. 188 (1969) 2218 [INSPIRE].ADSCrossRefGoogle Scholar
  111. [111]
    S. Ferrara, M. Porrati and V.L. Telegdi, g = 2 as the natural value of the tree level gyromagnetic ratio of elementary particles, Phys. Rev. D 46 (1992) 3529 [INSPIRE].ADSGoogle Scholar
  112. [112]
    H.P. Nilles, Supersymmetry, supergravity and particle physics, Phys. Rept. 110 (1984) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  113. [113]
    J.R. Ellis, K. Enqvist and D.V. Nanopoulos, A very light gravitino in a no scale model, Phys. Lett. B 147 (1984) 99 [INSPIRE].ADSGoogle Scholar
  114. [114]
    F. Mescia and C. Smith, Improved estimates of rare K decay matrix-elements from Kl3 decays, Phys. Rev. D 76 (2007) 034017 [arXiv:0705.2025] [INSPIRE].ADSGoogle Scholar
  115. [115]
    E787 collaboration, S. Adler et al., Further evidence for the decay \( {K^{ + }} \to {\pi^{ + }}\nu \bar{\nu } \), Phys. Rev. Lett. 88 (2002) 041803 [hep-ex/0111091] [INSPIRE].ADSCrossRefGoogle Scholar
  116. [116]
    E949 collaboration, A. Artamonov et al., New measurement of the \( {K^{ + }} \to {\pi^{ + }}\nu \bar{\nu } \) branching ratio, Phys. Rev. Lett. 101 (2008) 191802 [arXiv:0808.2459] [INSPIRE].ADSCrossRefGoogle Scholar
  117. [117]
    Proposals for nuclear and particle physics experiments at J-PARC webpage, http://j-parc.jp/NuclPart/Proposal e.html.
  118. [118]
    CERN-PH-NA62 webpage, http://na62.web.cern.ch/NA62/.
  119. [119]
    Project-X kaon physics website, https://project-x-kaons.fnal.gov/.
  120. [120]
    E391a collaboration, J. Ahn et al., Experimental study of the decay \( K_{\text{L}}^0 \to {\pi^0}\nu \bar{\nu } \), Phys. Rev. D 81 (2010) 072004 [arXiv:0911.4789] [INSPIRE].ADSGoogle Scholar
  121. [121]
    E949 collaboration, V. Anisimovsky et al., Improved measurement of the \( {K^{ + }} \to {\pi^{ + }}\nu \bar{\nu } \) branching ratio, Phys. Rev. Lett. 93 (2004) 031801 [hep-ex/0403036] [INSPIRE].ADSCrossRefGoogle Scholar
  122. [122]
    E787 collaboration, S. Adler et al., Search for the decay \( {K^{ + }} \to {\pi^{ + }}{\pi^0}\nu \bar{\nu } \), Phys. Rev. D 63 (2001) 032004 [hep-ex/0009055] [INSPIRE].ADSGoogle Scholar
  123. [123]
    E391a collaboration, R. Ogata et al., Study of the \( K_L^0 \to {\pi^0}{\pi^0}\nu \bar{\nu } \) decay, Phys. Rev. D 84 (2011) 052009 [arXiv:1106.3404] [INSPIRE].ADSGoogle Scholar
  124. [124]
    G. Ecker, A. Pich and E. de Rafael, Radiative kaon decays and CP-violation in chiral perturbation theory, Nucl. Phys. B 303 (1988) 665 [INSPIRE].ADSCrossRefGoogle Scholar
  125. [125]
    G. D’Ambrosio, G. Ecker, G. Isidori and H. Neufeld, Radiative four meson amplitudes in chiral perturbation theory, Phys. Lett. B 380 (1996) 165 [hep-ph/9603345] [INSPIRE].ADSGoogle Scholar
  126. [126]
    G. D’Ambrosio, G. Ecker, G. Isidori and H. Neufeld, K → πππγ in chiral perturbation theory, Z. Phys. C 76 (1997) 301 [hep-ph/9612412] [INSPIRE].Google Scholar
  127. [127]
    F. Low, Bremsstrahlung of very low-energy quanta in elementary particle collisions, Phys. Rev. 110 (1958) 974 [INSPIRE].ADSMATHCrossRefGoogle Scholar
  128. [128]
    E949 collaboration, A. Artamonov et al., Upper limit on the branching ratio for the decay π0 → νν, Phys. Rev. D 72 (2005) 091102 [hep-ex/0506028] [INSPIRE].ADSGoogle Scholar
  129. [129]
    SPQCDR collaboration, D. Becirevic, V. Lubicz, G. Martinelli and F. Mescia, First lattice calculation of the electromagnetic operator amplitude \( < {\pi^0}\left| {{\text{Q}}_{\gamma }^{ + }} \right|{{\text{K}}^0} > \), Phys. Lett. B 501 (2001) 98 [hep-ph/0010349] [INSPIRE].ADSGoogle Scholar
  130. [130]
    P. Buividovich, M. Chernodub, E. Luschevskaya and M. Polikarpov, Lattice QCD in strong magnetic fields, arXiv:0909.1808 [INSPIRE].
  131. [131]
    I. Baum, V. Lubicz, G. Martinelli, L. Orifici and S. Simula, Matrix elements of the electromagnetic operator between kaon and pion states, Phys. Rev. D 84 (2011) 074503 [arXiv:1108.1021] [INSPIRE].ADSGoogle Scholar
  132. [132]
    G. Buchalla and G. Isidori, The CP conserving contribution to \( {K_L} \to {\pi^0}\nu \bar{\nu } \) in the Standard Model, Phys. Lett. B 440 (1998) 170 [hep-ph/9806501] [INSPIRE].ADSGoogle Scholar
  133. [133]
    J. Brod, M. Gorbahn and E. Stamou, Two-loop electroweak corrections for the \( K \to \pi \nu \bar{\nu } \) decays, Phys. Rev. D 83 (2011) 034030 [arXiv:1009.0947] [INSPIRE].ADSGoogle Scholar
  134. [134]
    A. Buras, M. Gorbahn, U. Haisch and U. Nierste, The rare decay \( {K^{ + }} \to {\pi^{ + }}\nu \bar{\nu } \) at the next-to-next-to-leading order in QCD, Phys. Rev. Lett. 95 (2005) 261805 [hep-ph/0508165] [INSPIRE].ADSCrossRefGoogle Scholar
  135. [135]
    A.J. Buras, M. Gorbahn, U. Haisch and U. Nierste, Charm quark contribution to \( {K^{ + }} \to {\pi^{ + }}\nu \bar{\nu } \) at next-to-next-to-leading order, JHEP 11(2006) 002 [hep-ph/0603079] [INSPIRE].ADSCrossRefGoogle Scholar
  136. [136]
    J. Brod and M. Gorbahn, Electroweak corrections to the charm quark contribution to \( {K^{ + }} \to {\pi^{ + }}\nu \bar{\nu } \),Phys. Rev. D 78(2008) 034006 [arXiv:0805.4119] [INSPIRE].ADSGoogle Scholar
  137. [137]
    G. Isidori, F. Mescia and C. Smith, Light-quark loops in \( K \to \pi \nu \bar{\nu } \), Nucl. Phys. B 718 (2005) 319 [hep-ph/0503107] [INSPIRE].ADSCrossRefGoogle Scholar
  138. [138]
    C. Geng, I. Hsu and Y. Lin, CP conserving and violating contributions to \( {K_L} \to {\pi^{ + }}{\pi^{ - }}\nu \bar{\nu } \), Phys. Rev. D 50 (1994) 5744 [hep-ph/9406313] [INSPIRE].ADSGoogle Scholar
  139. [139]
    L. Littenberg and G. Valencia, The decays \( K \to \pi \pi \nu \bar{\nu } \) within the Standard Model, Phys. Lett. B 385 (1996) 379 [hep-ph/9512413] [INSPIRE].ADSGoogle Scholar
  140. [140]
    C.-W. Chiang and F.J. Gilman, \( {K_{{L,S}}} \to \pi \pi \nu \bar{\nu } \) decays within and beyond the Standard Model, Phys. Rev. D 62 (2000) 094026 [hep-ph/0007063] [INSPIRE].ADSGoogle Scholar
  141. [141]
    S. Richardson and C. Picciotto, Analysis of \( {K_L} \to \gamma \nu \bar{\nu } \), Phys. Rev. D 52 (1995) 6342 [hep-ph/9509372] [INSPIRE].ADSGoogle Scholar
  142. [142]
    W.J. Marciano and Z. Parsa, Rare kaon decays withmissing energy”, Phys. Rev. D 53 (1996) R1.ADSGoogle Scholar
  143. [143]
    J.-H. Jiang, D.-N. Gao and M.-L. Yan, \( {K_L} \to \gamma \nu \bar{\nu } \) decay beyond the Standard Model, Mod. Phys. Lett. A 18 (2003) 977 [hep-ph/0304111] [INSPIRE].ADSGoogle Scholar
  144. [144]
    C. Geng, C. Lih and C. Liu, \( {K_L} \to \gamma \nu \bar{\nu } \) in the light front model, Phys. Rev. D 62 (2000) 034019 [hep-ph/0004164] [INSPIRE].ADSGoogle Scholar
  145. [145]
    BABAR collaboration, B. Aubert et al., Search for \( B \to {K^{ * }}\nu \bar{\nu } \) decays, Phys. Rev. D 78 (2008) 072007 [arXiv:0808.1338] [INSPIRE].ADSGoogle Scholar
  146. [146]
    BABAR collaboration, P. del Amo Sanchez et al., Search for the rare decay \( B \to K\nu \bar{\nu } \), Phys. Rev. D 82 (2010) 112002 [arXiv:1009.1529] [INSPIRE].ADSGoogle Scholar
  147. [147]
    BELLE collaboration, K.-F. Chen et al., Search for \( B \to h\left( * \right)\nu \bar{\nu } \) decays at Belle, Phys. Rev. Lett. 99 (2007) 221802 [arXiv:0707.0138] [INSPIRE].ADSCrossRefGoogle Scholar
  148. [148]
    J.F. Kamenik and C. Smith, Tree-level contributions to the rare decays \( {B^{ + }} \to {\pi^{ + }}\nu \bar{\nu },\;{B^{ + }} \to {K^{ + }}\nu \bar{\nu } \) and \( {B^{ + }} \to {K^{{ * + }}}\nu \bar{\nu } \) in the Standard Model, Phys. Lett. B 680 (2009) 471 [arXiv:0908.1174] [INSPIRE].ADSGoogle Scholar
  149. [149]
    Belle collaboration, P. Urquijo, Exclusive (semi-)leptonic B meson decays at Belle, talk at the EPS 2011 conference, Grenoble France July 21 2011 [PoS(EPS-HEP2011)157].Google Scholar
  150. [150]
    BABAR collaboration, B. Aubert et al., Search for B 0 decays to invisible final states and to \( \nu \bar{\nu }\gamma \), Phys. Rev. Lett. 93 (2004) 091802 [hep-ex/0405071] [INSPIRE].ADSCrossRefGoogle Scholar
  151. [151]
    D. Becirevic, B. Haas and E. Kou, Soft photon problem in leptonic B-decays, Phys. Lett. B 681 (2009) 257 [arXiv:0907.1845] [INSPIRE].ADSGoogle Scholar
  152. [152]
    T. Aushev et al., Physics at SuperB factory, arXiv:1002.5012 [INSPIRE].
  153. [153]
    SuperB collaboration, B. O’Leary et al., SuperB progress reportsphysics, arXiv:1008.1541 [INSPIRE].
  154. [154]
    J. Laiho, E. Lunghi and R.S. Van de Water, Lattice QCD inputs to the CKM unitarity triangle analysis, Phys. Rev. D 81 (2010) 034503 [arXiv:0910.2928] [INSPIRE].ADSGoogle Scholar
  155. [155]
    P. Ball and R. Zwicky, New results on B → π, K, η decay formfactors from light-cone sum rules, Phys. Rev. D 71 (2005) 014015 [hep-ph/0406232] [INSPIRE].ADSGoogle Scholar
  156. [156]
    P. Ball and R. Zwicky, B D,S → ρ, ω, K∗, ϕ decay form-factors from light-cone sum rules revisited, Phys. Rev. D 71 (2005) 014029 [hep-ph/0412079] [INSPIRE].ADSGoogle Scholar
  157. [157]
    A. Khodjamirian, T. Mannel, N. Offen and Y.-M. Wang, B → πℓνl width and |V ub| from QCD light-cone sum rules, Phys. Rev. D 83 (2011) 094031 [arXiv:1103.2655] [INSPIRE].ADSGoogle Scholar
  158. [158]
    J.F. Kamenik, Theory of \( b \to s/d\nu \bar{\nu } \), arXiv:1012.5309 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.J. Stefan InstituteLjubljanaSlovenia
  2. 2.Department of PhysicsUniversity of LjubljanaLjubljanaSlovenia
  3. 3.Université Lyon 1 & CNRS/IN2P3, UMR5822 IPNLVilleurbanne CedexFrance

Personalised recommendations