Advertisement

The relativistic fluid dual to vacuum Einstein gravity

  • Geoffrey Compère
  • Paul McFadden
  • Kostas Skenderis
  • Marika Taylor
Open Access
Article

Abstract

We present a construction of a (d + 2)-dimensional Ricci-flat metric corresponding to a (d + 1)-dimensional relativistic fluid, representing holographically the hydrodynamic regime of a (putative) dual theory. We show how to obtain the metric to arbitrarily high order using a relativistic gradient expansion, and explicitly carry out the computation to second order. The fluid has zero energy density in equilibrium, which implies incompressibility at first order in gradients, and its stress tensor (both at and away from equilibrium) satisfies a quadratic constraint, which determines its energy density away from equilibrium. The entire dynamics to second order is encoded in one first order and six second order transport coefficients, which we compute. We classify entropy currents with non-negative divergence at second order in relativistic gradients. We then verify that the entropy current obtained by pulling back to the fluid surface the area form at the null horizon indeed has a non-negative divergence. We show that there are distinct near-horizon scaling limits that are equivalent either to the relativistic gradient expansion we discuss here, or to the non-relativistic expansion associated with the Navier-Stokes equations discussed in previous works. The latter expansion may be recovered from the present relativistic expansion upon taking a specific non-relativistic limit.

Keywords

Gauge-gravity correspondence Classical Theories of Gravity 

References

  1. [1]
    I. Bredberg, C. Keeler, V. Lysov and A. Strominger, From Navier-Stokes To Einstein, arXiv:1101.2451 [INSPIRE].
  2. [2]
    G. Compere, P. McFadden, K. Skenderis and M. Taylor, The Holographic fluid dual to vacuum Einstein gravity, JHEP 07 (2011) 050 [arXiv:1103.3022] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    I. Bredberg and A. Strominger, Black Holes as Incompressible Fluids on the Sphere, arXiv:1106.3084 [INSPIRE].
  4. [4]
    T.-Z. Huang, Y. Ling, W.-J. Pan, Y. Tian and X.-N. Wu, From Petrov-Einstein to Navier-Stokes in Spatially Curved Spacetime, JHEP 10 (2011) 079 [arXiv:1107.1464] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    R. Nakayama, The Holographic Fluid on the Sphere Dual to the Schwarzschild Black Hole, arXiv:1109.1185 [INSPIRE].
  6. [6]
    D. Anninos, T. Anous, I. Bredberg and G.S. Ng, Incompressible Fluids of the de Sitter Horizon and Beyond, arXiv:1110.3792 [INSPIRE].
  7. [7]
    G. Chirco, C. Eling and S. Liberati, Higher Curvature Gravity and the Holographic fluid dual to flat spacetime, JHEP 08 (2011) 009 [arXiv:1105.4482] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    C. Niu, Y. Tian, X.-N. Wu and Y. Ling, Incompressible Navier-Stokes Equation from Einstein-Maxwell and Gauss-Bonnet-Maxwell Theories, arXiv:1107.1430 [INSPIRE].
  9. [9]
    T. Damour, Quelques propriétés mécaniques, électromagnétiques, thermodynamiques et quantiques des trous noirs, Thèse de Doctorat d’Etat, Université Pierre et Marie Curie, Paris VI (1979).Google Scholar
  10. [10]
    T. Damour, Surface effects in black hole physics, in proceedings of Second Marcel Grossmann meeting on General Relativity, R. Ruffini ed., North Holland (1982).Google Scholar
  11. [11]
    K.S. Thorne, R.H. Price and D.A. Macdonald, Black Holes: the Membrane Paradigm, Yale University Press, New Haven, U.S.A. (1986).Google Scholar
  12. [12]
    S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear Fluid Dynamics from Gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    I. Fouxon and Y. Oz, Conformal Field Theory as Microscopic Dynamics of Incompressible Euler and Navier-Stokes Equations, Phys. Rev. Lett. 101 (2008) 261602 [arXiv:0809.4512] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    S. Bhattacharyya, S. Minwalla and S.R. Wadia, The Incompressible Non-Relativistic Navier-Stokes Equation from Gravity, JHEP 08 (2009) 059 [arXiv:0810.1545] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    C. Eling, I. Fouxon and Y. Oz, The Incompressible Navier-Stokes Equations From Membrane Dynamics, Phys. Lett. B 680 (2009) 496 [arXiv:0905.3638] [INSPIRE].MathSciNetADSGoogle Scholar
  16. [16]
    G. Policastro, D. Son and A. Starinets, The Shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, World-Volume Effective Theory for Higher-Dimensional Black Holes, Phys. Rev. Lett. 102 (2009) 191301 [arXiv:0902.0427] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Blackfolds in Supergravity and String Theory, JHEP 08 (2011) 154 [arXiv:1106.4428] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    R.-G. Cai, L. Li and Y.-L. Zhang, Non-Relativistic Fluid Dual to Asymptotically AdS Gravity at Finite Cutoff Surface, JHEP 07 (2011) 027 [arXiv:1104.3281] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    J. Mei, Towards A Possible Fluid Flow Underlying the Kerr Spacetime, arXiv:1104.3728 [INSPIRE].
  21. [21]
    V. Lysov and A. Strominger, From Petrov-Einstein to Navier-Stokes, arXiv:1104.5502. Added references, discussion and appendix detailing alternate boundary conditions with fixed mean curvature [INSPIRE].
  22. [22]
    S. Kuperstein and A. Mukhopadhyay, The unconditional RG flow of the relativistic holographic fluid, JHEP 11 (2011) 130 [arXiv:1105.4530] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    D. Brattan, J. Camps, R. Loganayagam and M. Rangamani, CFT dual of the AdS Dirichlet problem : Fluid/Gravity on cut-off surfaces, JHEP 12 (2011) 090 [arXiv:1106.2577] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    H. Verschelde and V. Zakharov, Notes on relativistic superfluidity and gauge/string duality, arXiv:1106.4154 [INSPIRE].
  25. [25]
    C. Eling and Y. Oz, Holographic Screens and Transport Coefficients in the Fluid/Gravity Correspondence, Phys. Rev. Lett. 107 (2011) 201602 [arXiv:1107.2134] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    F.G. Rodrigues, J. Rodrigues, Waldyr A. and R. da Rocha, The Maxwell and Navier-Stokes that Follow from Einstein Equation in a Spacetime Containing a Killing Vector Field, arXiv:1109.5274 [INSPIRE].
  27. [27]
    T.-Z. Huang, Y. Ling, W.-J. Pan, Y. Tian and X.-N. Wu, Fluid/Gravity duality with Petrov boundary condition in a spacetime with a cosmological constant, arXiv:1111.1576 [INSPIRE].
  28. [28]
    D. Marolf and M. Rangamani, Causality and the AdS Dirichlet problem, arXiv:1201.1233 [INSPIRE].
  29. [29]
    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  30. [30]
    S. Bhattacharyya, V.E. Hubeny, R. Loganayagam, G. Mandal, S. Minwalla, et al., Local Fluid Dynamical Entropy from Gravity, JHEP 06 (2008) 055 [arXiv:0803.2526] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    C. Eling, A. Meyer and Y. Oz, The Relativistic Rindler Hydrodynamics, arXiv:1201.2705 [INSPIRE].
  32. [32]
    I. Papadimitriou and K. Skenderis, AdS/CFT correspondence and geometry, hep-th/0404176 [INSPIRE].
  33. [33]
    I. Booth, M.P. Heller and M. Spalinski, Black Brane Entropy and Hydrodynamics, Phys. Rev. D 83 (2011) 061901 [arXiv:1010.6301] [INSPIRE].ADSGoogle Scholar
  34. [34]
    I. Booth, M.P. Heller, G. Plewa and M. Spalinski, On the apparent horizon in fluid-gravity duality, Phys. Rev. D 83 (2011) 106005 [arXiv:1102.2885] [INSPIRE].ADSGoogle Scholar
  35. [35]
    P. Romatschke, Relativistic Viscous Fluid Dynamics and Non-Equilibrium Entropy, Class. Quant. Grav. 27 (2010) 025006 [arXiv:0906.4787] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    S. Bhattacharyya, Constraints on the second order transport coefficients of an uncharged fluid, arXiv:1201.4654 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Geoffrey Compère
    • 1
    • 2
  • Paul McFadden
    • 2
    • 4
  • Kostas Skenderis
    • 1
    • 2
    • 3
  • Marika Taylor
    • 2
    • 3
  1. 1.KdV Institute for MathematicsAmsterdamthe Netherlands
  2. 2.Institute for Theoretical PhysicsAmsterdamthe Netherlands
  3. 3.Gravitation and Astro-Particle Physics AmsterdamAmsterdamthe Netherlands
  4. 4.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations