Advertisement

Black hole deconstruction

  • Frederik Denef
  • Davide Gaiotto
  • Andrew Strominger
  • Dieter Van den BleekenEmail author
  • Xi Yin
Article

Abstract

A D4-D0 black hole can be deconstructed into a bound state of D0 branes with a \( D{6} - \bar{D}{6} \) pair containing worldvolume fluxes. The exactha spacetime solution is known and resembles a D0 accretion disk surrounding a \( D{6} - \bar{D}{6} \) core. We find a scaling limit in which the disk and core drop inside an AdS 2 throat. Crossing this AdS 2 throat and the D0 accretion disk into the core, we find a second scaling region describing the \( D{6} - \bar{D}{6} \) pair. It is shown that the M-theory lift of this region is AdS 3 × S 2. Surprisingly, time translations in the far asymptotic region reduce to global, rather than Poincaré, time translations in this core AdS 3. We further find that the quantum mechanical ground state degeneracy reproduces the Bekenstein-Hawking entropy-area law.

Keywords

Black Holes in String Theory D-branes 

References

  1. [1]
    G. Gibbons and P. Townsend, Black holes and Calogero models, Phys. Lett. B 454 (1999) 187 [hep-th/9812034] [INSPIRE].MathSciNetADSGoogle Scholar
  2. [2]
    A. Simons, A. Strominger, D.M. Thompson and X. Yin, Supersymmetric branes in AdS 2 × S 2 × CY 3, Phys. Rev. D 71 (2005) 066008 [hep-th/0406121] [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    J.P. Gauntlett, J.B. Gutowski, C.M. Hull, S. Pakis and H.S. Reall, All supersymmetric solutions of minimal supergravity in five-dimensions, Class. Quant. Grav. 20 (2003) 4587 [hep-th/0209114] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. [4]
    R. Gopakumar and C. Vafa, M theory and topological strings II, hep-th/9812127 [INSPIRE].
  5. [5]
    R. Gopakumar and C. Vafa, M theory and topological strings I, hep-th/9809187 [INSPIRE].
  6. [6]
    C. Vafa, Black holes and Calabi-Yau threefolds, Adv. Theor. Math. Phys. 2 (1998) 207 [hep-th/9711067] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  7. [7]
    H. Ooguri, A. Strominger and C. Vafa, Black hole attractors and the topological string, Phys. Rev. D 70 (2004) 106007 [hep-th/0405146] [INSPIRE].MathSciNetADSGoogle Scholar
  8. [8]
    J.M. Maldacena, A. Strominger and E. Witten, Black hole entropy in M-theory, JHEP 12 (1997) 002 [hep-th/9711053] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    R. Dijkgraaf, R. Gopakumar, H. Ooguri and C. Vafa, Baby universes in string theory, Phys. Rev. D 73 (2006) 066002 [hep-th/0504221] [INSPIRE].MathSciNetADSGoogle Scholar
  10. [10]
    M. Aganagic, H. Ooguri, N. Saulina and C. Vafa, Black holes, q-deformed 2D Yang-Mills and non-perturbative topological strings, Nucl. Phys. B 715 (2005) 304 [hep-th/0411280] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    B. Bates and F. Denef, Exact solutions for supersymmetric stationary black hole composites, JHEP 11 (2011) 127 [hep-th/0304094] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    F. Denef, Supergravity flows and D-brane stability, JHEP 08 (2000) 050 [hep-th/0005049] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    F. Denef and G.W. Moore, Split states, entropy enigmas, holes and halos, JHEP 11 (2011) 129 [hep-th/0702146] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    C. Vafa, Two dimensional Yang-Mills, black holes and topological strings, hep-th/0406058 [INSPIRE].
  15. [15]
    A. Fujii, R. Kemmoku and S. Mizoguchi, D = 5 simple supergravity on AdS 3 × S 2 and N = 4 superconformal field theory, Nucl. Phys. B 574 (2000) 691 [hep-th/9811147] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    D. Gaiotto, A. Strominger and X. Yin, From AdS 3/CFT 2 to black holes/topological strings, JHEP 09 (2007) 050 [hep-th/0602046] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    R. Britto-Pacumio, J. Michelson, A. Strominger and A. Volovich, Lectures on superconformal quantum mechanics and multiblack hole moduli spaces, hep-th/9911066 [INSPIRE].
  18. [18]
    R. Britto-Pacumio, A. Strominger and A. Volovich, Two black hole bound states, JHEP 03 (2001) 050 [hep-th/0004017] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    S.D. Mathur, The fuzzball proposal for black holes: an elementary review, Fortsch. Phys. 53 (2005) 793 [hep-th/0502050] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  20. [20]
    J.M. Maldacena and A. Strominger, AdS 3 black holes and a stringy exclusion principle, JHEP 12 (1998) 005 [hep-th/9804085] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    D. Mateos and P.K. Townsend, Supertubes, Phys. Rev. Lett. 87 (2001) 011602 [hep-th/0103030] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    D. Gaiotto, A. Strominger and X. Yin, Superconformal black hole quantum mechanics, JHEP 11 (2005) 017 [hep-th/0412322] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Frederik Denef
    • 1
  • Davide Gaiotto
    • 2
  • Andrew Strominger
    • 2
  • Dieter Van den Bleeken
    • 1
    Email author
  • Xi Yin
    • 2
  1. 1.Institute for Theoretical Physics, K.U. LeuvenLeuvenBelgium
  2. 2.Center for the Fundamental Laws of Nature, Jefferson Physical LaboratoryHarvard UniversityCambridgeU.S.A.

Personalised recommendations