Advertisement

Asymptotic charged BTZ black hole solutions

  • S. H. HendiEmail author
Article

Abstract

The well-known (2 + 1)-dimensional Reissner-Nordström (BTZ) black hole can be generalized to three dimensional Einstein-nonlinear electromagnetic field, motivated from obtaining a finite value for the self-energy of a pointlike charge. Considering three types of nonlinear electromagnetic fields coupled with Einstein gravity, we derive three kinds of black hole solutions which their asymptotic properties are the same as charged BTZ solution. In addition, we calculate conserved and thermodynamic quantities of the solutions and show that they satisfy the first law of thermodynamics. Finally, we perform a stability analysis in the canonical ensemble and show that the black holes are stable in the whole phase space.

Keywords

Classical Theories of Gravity Black Holes 

References

  1. [1]
    E.S. Fradkin and A.A. Tseytlin, Nonlinear electrodynamics from quantized strings, Phys. Lett. B 163 (1985) 123 [INSPIRE].MathSciNetADSGoogle Scholar
  2. [2]
    E. Bergshoeff, E. Sezgin, C.N. Pope and P.K. Townsend, The Born-Infeld action from conformal invariance of the open superstring, Phys. Lett. B 188 (1987) 70 [INSPIRE].ADSGoogle Scholar
  3. [3]
    R.R. Metsaev, M.A. Rakhmanov and A.A. Tseytlin, The Born-Infeld action as the effective action in the open superstring theory, Phys. Lett. B 193 (1987) 207 [INSPIRE].MathSciNetADSGoogle Scholar
  4. [4]
    A.A. Tseytlin, On nonAbelian generalization of Born-Infeld action in string theory, Nucl. Phys. B 501 (1997) 41 [hep-th/9701125] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    D. Brecher and M.J. Perry, Bound states of D-branes and the nonAbelian Born-Infeld action, Nucl. Phys. B 527 (1998) 121 [hep-th/9801127] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    M. Born and L. Infeld, Quantum theory of the electromagnetic field, Proc. Roy. Soc. Lond. A 143 (1934) 410 [INSPIRE].ADSGoogle Scholar
  7. [7]
    M. Born and L. Infeld, Foundations of the new field theory, Proc. Roy. Soc. Lond. A 144 (1934)425 [INSPIRE].ADSGoogle Scholar
  8. [8]
    R.G. Leigh, Dirac-Born-Infeld action from Dirichlet σ-model, Mod. Phys. Lett. A 4 (1989) 2767 [INSPIRE].MathSciNetADSGoogle Scholar
  9. [9]
    B. Hoffmann, Gravitational and electromagnetic mass in the Born-Infeld electrodynamics, Phys. Rev. 47 (1935) 877 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    M.H. Dehghani and H. Rastegar Sedehi, Thermodynamics of rotating black branes in (n + 1)-dimensional Einstein-Born-Infeld gravity, Phys. Rev. D 74 (2006) 124018 [hep-th/0610239] [INSPIRE].MathSciNetADSGoogle Scholar
  11. [11]
    D.L. Wiltshire, Black holes in string generated gravity models, Phys. Rev. D 38 (1988) 2445 [INSPIRE].MathSciNetADSGoogle Scholar
  12. [12]
    M. Aiello, R. Ferraro and G. Giribet, Exact solutions of Lovelock-Born-Infeld black holes, Phys. Rev. D 70 (2004) 104014 [gr-qc/0408078] [INSPIRE].MathSciNetADSGoogle Scholar
  13. [13]
    M.H. Dehghani and S.H. Hendi, Thermodynamics of rotating black branes in Gauss-Bonnet-Born-Infeld gravity, Int. J. Mod. Phys. D 16 (2007) 1829 [hep-th/0611087] [INSPIRE].MathSciNetADSGoogle Scholar
  14. [14]
    M.H. Dehghani, S.H. Hendi, A. Sheykhi and H. Rastegar Sedehi, Thermodynamics of rotating black branes in (n + 1)-dimensional Einstein-Born-Infeld-dilaton gravity, JCAP 02 (2007) 020 [hep-th/0611288] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    M.H. Dehghani, N. Alinejadi and S.H. Hendi, Topological black holes in Lovelock-Born-Infeld gravity, Phys. Rev. D 77 (2008) 104025 [arXiv:0802.2637] [INSPIRE].MathSciNetADSGoogle Scholar
  16. [16]
    S.H. Hendi, Rotating black branes in Brans-Dicke-Born-Infeld theory, J. Math. Phys. 49 (2008) 082501 [arXiv:0808.2347] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  17. [17]
    M. Hassaine and C. Martinez, Higher-dimensional black holes with a conformally invariant Maxwell source, Phys. Rev. D 75 (2007) 027502 [hep-th/0701058] [INSPIRE].MathSciNetADSGoogle Scholar
  18. [18]
    S.H. Hendi and H. Rastegar-Sedehi, Ricci flat rotating black branes with a conformally invariant Maxwell source, Gen. Rel. Grav. 41 (2009) 1355 [arXiv:1007.2475] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  19. [19]
    S.H. Hendi, Topological black holes in Gauss-Bonnet gravity with conformally invariant Maxwell source, Phys. Lett. B 677 (2009) 123 [arXiv:1007.2479] [INSPIRE].MathSciNetADSGoogle Scholar
  20. [20]
    M. Hassaine and C. Martinez, Higher-dimensional charged black holes solutions with a nonlinear electrodynamics source, Class. Quant. Grav. 25 (2008) 195023 [arXiv:0803.2946] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    H. Maeda, M. Hassaine and C. Martinez, Lovelock black holes with a nonlinear Maxwell field, Phys. Rev. D 79 (2009) 044012 [arXiv:0812.2038] [INSPIRE].ADSGoogle Scholar
  22. [22]
    S.H. Hendi and B.E. Panah, Thermodynamics of rotating black branes in Gauss-Bonnet-nonlinear Maxwell gravity, Phys. Lett. B 684 (2010) 77 [arXiv:1008.0102] [INSPIRE].MathSciNetADSGoogle Scholar
  23. [23]
    S.H. Hendi, The relation between F (R) gravity and Einstein-conformally invariant Maxwell source, Phys. Lett. B 690 (2010) 220 [arXiv:0907.2520] [INSPIRE].MathSciNetADSGoogle Scholar
  24. [24]
    S.H. Hendi, Slowly rotating black holes in Einstein-generalized Maxwell gravity, Prog. Theor. Phys. 124 (2010) 493 [arXiv:1008.0544] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  25. [25]
    S.H. Hendi, Rotating black branes in the presence of nonlinear electromagnetic field, Eur. Phys. J. C 69 (2010) 281 [arXiv:1008.0168] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    S.H. Hendi, Rotating black string with nonlinear source, Phys. Rev. D 82 (2010) 064040 [arXiv:1008.5210] [INSPIRE].ADSGoogle Scholar
  27. [27]
    E. Ayon-Beato and A. Garcia, Regular black hole in general relativity coupled to nonlinear electrodynamics, Phys. Rev. Lett. 80 (1998) 5056 [gr-qc/9911046] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    H.P. de Oliveira, Nonlinear charged black holes, Class. Quant. Grav. 11 (1994) 1469 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    H.H. Soleng, Charged black points in general relativity coupled to the logarithmic U(1) gauge theory, Phys. Rev. D 52 (1995) 6178 [hep-th/9509033] [INSPIRE].MathSciNetADSGoogle Scholar
  30. [30]
    H.P. de Oliveira, Nonlinear charged black holes, Class. Quant. Grav. 11 (1994) 1469 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    D. Palatnik, Born-Infeld gravitation: spherically symmetric static solutions, Phys. Lett. B 432 (1998) 287 [quant-ph/9701017] [INSPIRE].MathSciNetADSGoogle Scholar
  32. [32]
    E. Ayon-Beato and A. Garcia, Regular black hole in general relativity coupled to nonlinear electrodynamics, Phys. Rev. Lett. 80 (1998) 5056 [gr-qc/9911046] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    E. Ayon-Beato and A. Garcia, Nonsingular charged black hole solution for nonlinear source, Gen. Rel. Grav. 31 (1999) 629 [gr-qc/9911084] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  34. [34]
    E. Ayon-Beato and A. Garcia, New regular black hole solution from nonlinear electrodynamics, Phys. Lett. B 464 (1999) 25 [hep-th/9911174] [INSPIRE].MathSciNetADSGoogle Scholar
  35. [35]
    D.A. Rasheed, Nonlinear electrodynamics: zeroth and first laws of black hole mechanics, hep-th/9702087 [INSPIRE].
  36. [36]
    G. Boillat, Nonlinear electrodynamicsLagrangians and equations of motion, J. Math. Phys. 11 (1970) 941 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    G. Boillat, Simple waves in N-dimensional propagation, J. Math. Phys. 11 (1970) 1482.ADSzbMATHCrossRefGoogle Scholar
  38. [38]
    G.W. Gibbons and D.A. Rasheed, Electric-magnetic duality rotations in nonlinear electrodynamics, Nucl. Phys. B 454 (1995) 185 [hep-th/9506035] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    R. Gopakumar, S. Minwalla, N. Seiberg and A. Strominger, (OM) theory in diverse dimensions, JHEP 08 (2000) 008 [hep-th/0006062] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    T. Tamaki and K.-i. Maeda, Fate of a Reissner-Nordström black hole in the Einstein-Yang-Mills-Higgs system, Phys. Rev. D 62 (2000) 084041 [INSPIRE].MathSciNetADSGoogle Scholar
  41. [41]
    H. Yajima and T. Tamaki, Black hole solutions in Euler-Heisenberg theory, Phys. Rev. D 63 (2001) 064007 [gr-qc/0005016] [INSPIRE].MathSciNetADSGoogle Scholar
  42. [42]
    S. Kar and S. Majumdar, Black hole geometries in noncommutative string theory, Int. J. Mod. Phys. A 21 (2006) 6087 [hep-th/0510043] [INSPIRE].MathSciNetADSGoogle Scholar
  43. [43]
    M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity bound violation in higher derivative gravity, Phys. Rev. D 77 (2008) 126006 [arXiv:0712.0805] [INSPIRE].ADSGoogle Scholar
  44. [44]
    Y. Kats and P. Petrov, Effect of curvature squared corrections in AdS on the viscosity of the dual gauge theory, JHEP 01 (2009) 044 [arXiv:0712.0743] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    P. Kovtun, D.T. Son and A.O. Starinets, Holography and hydrodynamics: diffusion on stretched horizons, JHEP 10 (2003) 064 [hep-th/0309213] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    R.-G. Cai and Y.-W. Sun, Shear viscosity from AdS Born-Infeld black holes, JHEP 09 (2008) 115 [arXiv:0807.2377] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    X.-H. Ge, Y. Matsuo, F.-W. Shu, S.-J. Sin and T. Tsukioka, Viscosity bound, causality violation and instability with stringy correction and charge, JHEP 10 (2008) 009 [arXiv:0808.2354] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    J. Jing and S. Chen, Holographic superconductors in the Born-Infeld electrodynamics, Phys. Lett. B 686 (2010) 68 [arXiv:1001.4227] [INSPIRE].MathSciNetADSGoogle Scholar
  49. [49]
    R. Gregory, S. Kanno and J. Soda, Holographic superconductors with higher curvature corrections, JHEP 10 (2009) 010 [arXiv:0907.3203] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    Q.Y. Pan, B. Wang, E. Papantonopoulos, J. Oliveira and A. Pavan, Holographic superconductors with various condensates in Einstein-Gauss-Bonnet gravity, Phys. Rev. D 81 (2010) 106007 [arXiv:0912.2475] [INSPIRE].ADSGoogle Scholar
  51. [51]
    H.J. Mosquera Cuesta and J.M. Salim, Nonlinear electrodynamics and the gravitational redshift of pulsars, Mon. Not. Roy. Astron. Soc. 354 (2004) L55 [astro-ph/0403045] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    H.J. Mosquera Cuesta and J.M. Salim, Nonlinear electrodynamics and the surface redshift of pulsars, Astrophys. J. 608 (2004) 925 [astro-ph/0307513] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  54. [54]
    M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole, Phys. Rev. D 48 (1993) 1506 [gr-qc/9302012] [INSPIRE].ADSGoogle Scholar
  55. [55]
    S. Nojiri and S.D. Odintsov, Can quantum corrected BTZ black hole anti-evaporate?, Mod. Phys. Lett. A 13 (1998) 2695 [gr-qc/9806034] [INSPIRE].MathSciNetADSGoogle Scholar
  56. [56]
    R. Emparan, G.T. Horowitz and R.C. Myers, Exact description of black holes on branes. 2. Comparison with BTZ black holes and black strings, JHEP 01 (2000) 021 [hep-th/9912135] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  57. [57]
    S. Hemming, E. Keski-Vakkuri and P. Kraus, Strings in the extended BTZ space-time, JHEP 10 (2002) 006 [hep-th/0208003] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  58. [58]
    M.R. Setare, Nonrotating BTZ black hole area spectrum from quasinormal modes, Class. Quant. Grav. 21 (2004) 1453 [hep-th/0311221] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  59. [59]
    B. Sahoo and A. Sen, BTZ black hole with Chern-Simons and higher derivative terms, JHEP 07 (2006) 008 [hep-th/0601228] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  60. [60]
    M.R. Setare, Gauge and gravitational anomalies and Hawking radiation of rotating BTZ black holes, Eur. Phys. J. C 49 (2007) 865 [hep-th/0608080] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  61. [61]
    M. Cadoni and M.R. Setare, Near-horizon limit of the charged BTZ black hole and AdS 2 quantum gravity, JHEP 07 (2008) 131 [arXiv:0806.2754] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  62. [62]
    M.-I. Park, BTZ black hole with gravitational Chern-Simons: thermodynamics and statistical entropy, Phys. Rev. D 77 (2008) 026011 [hep-th/0608165] [INSPIRE].ADSGoogle Scholar
  63. [63]
    M.-I. Park, BTZ black hole with higher derivatives, the second law of thermodynamics and statistical entropy: a new proposal, Phys. Rev. D 77 (2008) 126012 [hep-th/0609027] [INSPIRE].ADSGoogle Scholar
  64. [64]
    J. Parsons and S.F. Ross, Strings in extremal BTZ black holes, JHEP 04 (2009) 134 [arXiv:0901.3044] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    M.R. Setare and M. Jamil, The Cardy-Verlinde formula and entropy of the charged rotating BTZ black hole, Phys. Lett. B 681 (2009) 469 [arXiv:0912.0861] [INSPIRE].MathSciNetADSGoogle Scholar
  66. [66]
    S. Carlip, The (2 + 1)-dimensional black hole, Class. Quant. Grav. 12 (1995) 2853 [gr-qc/9506079] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  67. [67]
    A. Ashtekar, J. Wisniewski and O. Dreyer, Isolated horizons in (2 + 1) gravity, Adv. Theor. Math. Phys. 6 (2002) 507 [gr-qc/0206024] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  68. [68]
    T. Sarkar, G. Sengupta and B. Nath Tiwari, On the thermodynamic geometry of BTZ black holes, JHEP 11 (2006) 015 [hep-th/0606084] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  70. [70]
    S. Carlip, Conformal field theory, (2 + 1)-dimensional gravity and the BTZ black hole, Class. Quant. Grav. 22 (2005) R85 [gr-qc/0503022] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  71. [71]
    E. Witten, Three-dimensional gravity revisited, arXiv:0706.3359 [INSPIRE].
  72. [72]
    S.P. Kim, S.K. Kim, K.-S. Soh and J.H. Yee, Renormalized thermodynamic entropy of black holes in higher dimensions, Phys. Rev. D 55 (1997) 2159 [gr-qc/9608015] [INSPIRE].MathSciNetADSGoogle Scholar
  73. [73]
    G.W. Gibbons, M.J. Perry and C.N. Pope, The first law of thermodynamics for Kerr-anti-de Sitter black holes, Class. Quant. Grav. 22 (2005) 1503 [hep-th/0408217] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  74. [74]
    J.E. Aman and N. Pidokrajt, Geometry of higher-dimensional black hole thermodynamics, Phys. Rev. D 73 (2006) 024017 [hep-th/0510139] [INSPIRE].MathSciNetADSGoogle Scholar
  75. [75]
    H. Saida and J. Soda, Statistical entropy of BTZ black hole in higher curvature gravity, Phys. Lett. B 471 (2000) 358 [gr-qc/9909061] [INSPIRE].MathSciNetADSGoogle Scholar
  76. [76]
    M. Cadoni, M. Melis and M.R. Setare, Microscopic entropy of the charged BTZ black hole, Class. Quant. Grav. 25 (2008) 195022 [arXiv:0710.3009] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  77. [77]
    A. Larranaga, Entanglement entropy for the charged BTZ black hole, Bulg. J. Phys. 38 (2011)123 [arXiv:1002.3416] [INSPIRE].MathSciNetGoogle Scholar
  78. [78]
    S. Hyun, U duality between three-dimensional and higher dimensional black holes, J. Korean Phys. Soc. 33 (1998) S532 [hep-th/9704005] [INSPIRE].ADSGoogle Scholar
  79. [79]
    K. Sfetsos and K. Skenderis, Microscopic derivation of the Bekenstein-Hawking entropy formula for nonextremal black holes, Nucl. Phys. B 517 (1998) 179 [hep-th/9711138] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  80. [80]
    F. Canfora and A. Giacomini, BTZ-like black holes in even dimensional Lovelock theories, Phys. Rev. D 82 (2010) 024022 [arXiv:1005.0091] [INSPIRE].MathSciNetADSGoogle Scholar
  81. [81]
    L. Claessens, The horizon of the BTZ black hole, arXiv:0912.2245 [INSPIRE].
  82. [82]
    L. Claessens, BTZ black hole from the structure of the algebra SO(2, n), arXiv:0912.2267 [INSPIRE].
  83. [83]
    S.H. Hendi, Charged BTZ-like black holes in higher dimensions, Eur. Phys. J. C 71 (2011) 1551 [arXiv:1007.2704] [INSPIRE].ADSGoogle Scholar
  84. [84]
    J.T. Liu and P. Szepietowski, Higher derivative corrections to R-charged AdS 5 black holes and field redefinitions, Phys. Rev. D 79 (2009) 084042 [arXiv:0806.1026] [INSPIRE].MathSciNetADSGoogle Scholar
  85. [85]
    Y. Kats, L. Motl and M. Padi, Higher-order corrections to mass-charge relation of extremal black holes, JHEP 12 (2007) 068 [hep-th/0606100] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  86. [86]
    D. Anninos and G. Pastras, Thermodynamics of the Maxwell-Gauss-Bonnet anti-de Sitter black hole with higher derivative gauge corrections, JHEP 07 (2009) 030 [arXiv:0807.3478] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    R.-G. Cai, Z.-Y. Nie and Y.-W. Sun, Shear viscosity from effective couplings of gravitons, Phys. Rev. D 78 (2008) 126007 [arXiv:0811.1665] [INSPIRE].ADSGoogle Scholar
  88. [88]
    D.J. Gross and J.H. Sloan, The quartic effective action for the heterotic string, Nucl. Phys. B 291 (1987) 41 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  89. [89]
    E.A. Bergshoeff and M. de Roo, The quartic effective action of the heterotic string and supersymmetry, Nucl. Phys. B 328 (1989) 439 [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    W.A. Chemissany, M. de Roo and S. Panda, α′-corrections to heterotic superstring effective action revisited, JHEP 08 (2007) 037 [arXiv:0706.3636] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    M. Natsuume, Higher order correction to the GHS string black hole, Phys. Rev. D 50 (1994) 3949 [hep-th/9406079] [INSPIRE].MathSciNetADSGoogle Scholar
  92. [92]
    D. Garfinkle, G.T. Horowitz and A. Strominger, Charged black holes in string theory, Phys. Rev. D 43 (1991) 3140 [Erratum ibid. D 45 (1992) 3888] [INSPIRE].MathSciNetADSGoogle Scholar
  93. [93]
    A. Ritz and R. Delbourgo, The low-energy effective Lagrangian for photon interactions in any dimension, Int. J. Mod. Phys. A 11 (1996) 253 [hep-th/9503160] [INSPIRE].ADSGoogle Scholar
  94. [94]
    W. Heisenberg and H. Euler, Consequences of Dirac theory of the positron, Z. Phys. 98 (1936)714 [physics/0605038] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    B.L. Altschueler, An alternative way to inflation and the possibility of antiinflation, Class. Quant. Grav. 7 (1990) 189 [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    R.C. Myers, Higher derivative gravity, surface terms and string theory, Phys. Rev. D 36 (1987) 392 [INSPIRE].ADSGoogle Scholar
  97. [97]
    S.C. Davis, Generalized Israel junction conditions for a Gauss-Bonnet brane world, Phys. Rev. D 67 (2003) 024030 [hep-th/0208205] [INSPIRE].ADSGoogle Scholar
  98. [98]
    M. Cataldo and A. Garcia, Three dimensional black hole coupled to the Born-Infeld electrodynamics, Phys. Lett. B 456 (1999) 28 [hep-th/9903257] [INSPIRE].MathSciNetADSGoogle Scholar
  99. [99]
    R. Yamazaki and D. Ida, Black holes in three-dimensional Einstein-Born-Infeld dilaton theory, Phys. Rev. D 64 (2001) 024009 [gr-qc/0105092] [INSPIRE].MathSciNetADSGoogle Scholar
  100. [100]
    Y.S. Myung, Y.-W. Kim and Y.-J. Park, Thermodynamics of Einstein-Born-Infeld black holes in three dimensions, Phys. Rev. D 78 (2008) 044020 [arXiv:0804.0301] [INSPIRE].MathSciNetADSGoogle Scholar
  101. [101]
    R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey and D.E. Knuth, On the Lambert W function, Adv. Comput. Math. 5 (1996) 329.MathSciNetzbMATHCrossRefGoogle Scholar
  102. [102]
    M. Cvetic and S.S. Gubser, Phases of R charged black holes, spinning branes and strongly coupled gauge theories, JHEP 04 (1999) 024 [hep-th/9902195] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  103. [103]
    M.M. Caldarelli, G. Cognola and D. Klemm, Thermodynamics of Kerr-Newman-AdS black holes and conformal field theories, Class. Quant. Grav. 17 (2000) 399 [hep-th/9908022] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  104. [104]
    J.D. Bekenstein, Black holes and the second law, Lett. Nuovo Cim. 4 (1972) 737 [INSPIRE].ADSCrossRefGoogle Scholar
  105. [105]
    J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].MathSciNetADSGoogle Scholar
  106. [106]
    S.W. Hawking and C.J. Hunter, Gravitational entropy and global structure, Phys. Rev. D 59 (1999) 044025 [hep-th/9808085] [INSPIRE].MathSciNetADSGoogle Scholar
  107. [107]
    S.W. Hawking, C.J. Hunter and D.N. Page, Nut charge, anti-de Sitter space and entropy, Phys. Rev. D 59 (1999) 044033 [hep-th/9809035] [INSPIRE].MathSciNetADSGoogle Scholar
  108. [108]
    R.B. Mann, Misner string entropy, Phys. Rev. D 60 (1999) 104047 [hep-th/9903229] [INSPIRE].ADSGoogle Scholar
  109. [109]
    R.B. Mann, Entropy of rotating Misner string space-times, Phys. Rev. D 61 (2000) 084013 [hep-th/9904148] [INSPIRE].ADSGoogle Scholar
  110. [110]
    C.J. Hunter, The action of instantons with nut charge, Phys. Rev. D 59 (1999) 024009 [gr-qc/9807010] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Physics Department and Biruni ObservatoryShiraz UniversityShirazIran
  2. 2.Research Institute for Astrophysics and Astronomy of Maragha (RIAAM)MaraghaIran
  3. 3.Physics Department, College of SciencesYasouj UniversityYasoujIran

Personalised recommendations