The new flavor of Higgsed gauge mediation

  • Nathaniel Craig
  • Matthew McCulloughEmail author
  • Jesse Thaler


Recent LHC bounds on squark masses combined with naturalness and flavor considerations motivate non-trivial sfermion mass spectra in the supersymmetric Standard Model. These can arise if supersymmetry breaking is communicated to the visible sector via new extended gauge symmetries. Such extended symmetries must be spontaneously broken, or confined, complicating the calculation of soft masses. We develop a new formalism for calculating perturbative gauge-mediated two-loop soft masses for gauge groups with arbitrary patterns of spontaneous symmetry breaking, simplifying the framework of “Higgsed gauge mediation.” The resulting expressions can be applied to Abelian and non-Abelian gauge groups, opening new avenues for supersymmetric model building. We present a number of examples using our method, ranging from grand unified threshold corrections in standard gauge mediation to soft masses in gauge extensions of the Higgs sector that can raise the Higgs mass through non-decoupling D-terms. We also outline a new mediation mechanism called “flavor mediation”, where supersymmetry breaking is communicated via a gauged subgroup of Standard Model flavor symmetries. Flavor mediation can automatically generate suppressed masses for third-generation squarks and implies a nearly exact U(2) symmetry in the first two generations, yielding a “natural SUSY” spectrum without imposing ad hoc global symmetries or giving preferential treatment to particular generations.


Supersymmetric gauge theory Supersymmetry Breaking Beyond Standard Model Supersymmetric Standard Model 


  1. [1]
    G. Giudice and R. Rattazzi, Theories with gauge mediated supersymmetry breaking, Phys. Rept. 322 (1999) 419 [hep-ph/9801271] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    P. Meade, N. Seiberg and D. Shih, General gauge mediation, Prog. Theor. Phys. Suppl. 177 (2009)143 [arXiv:0801.3278] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  3. [3]
    M. Dine, R.G. Leigh and A. Kagan, Flavor symmetries and the problem of squark degeneracy, Phys. Rev. D 48 (1993) 4269 [hep-ph/9304299] [INSPIRE].ADSGoogle Scholar
  4. [4]
    P. Pouliot and N. Seiberg, (S)quark masses and nonAbelian horizontal symmetries, Phys. Lett. B 318 (1993) 169 [hep-ph/9308363] [INSPIRE].ADSGoogle Scholar
  5. [5]
    R. Barbieri, L.J. Hall and A. Strumia, Hadronic flavor and CP-violating signals of superunification, Nucl. Phys. B 449 (1995) 437 [hep-ph/9504373] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S. Dimopoulos and G. Giudice, Naturalness constraints in supersymmetric theories with nonuniversal soft terms, Phys. Lett. B 357 (1995) 573 [hep-ph/9507282] [INSPIRE].ADSGoogle Scholar
  7. [7]
    A. Pomarol and D. Tommasini, Horizontal symmetries for the supersymmetric flavor problem, Nucl. Phys. B 466 (1996) 3 [hep-ph/9507462] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    R. Barbieri, G. Dvali and L.J. Hall, Predictions from a U(2) flavor symmetry in supersymmetric theories, Phys. Lett. B 377 (1996) 76 [hep-ph/9512388] [INSPIRE].ADSGoogle Scholar
  9. [9]
    A.G. Cohen, D. Kaplan and A. Nelson, The more minimal supersymmetric standard model, Phys. Lett. B 388 (1996) 588 [hep-ph/9607394] [INSPIRE].ADSGoogle Scholar
  10. [10]
    R. Barbieri, L.J. Hall and A. Romanino, Consequences of a U(2) flavor symmetry, Phys. Lett. B 401 (1997) 47 [hep-ph/9702315] [INSPIRE].ADSGoogle Scholar
  11. [11]
    M. Gabella, T. Gherghetta and J. Giedt, A gravity dual and LHC study of single-sector supersymmetry breaking, Phys. Rev. D 76 (2007) 055001 [arXiv:0704.3571] [INSPIRE].ADSGoogle Scholar
  12. [12]
    R. Sundrum, SUSY splits, but then returns, JHEP 01 (2011) 062 [arXiv:0909.5430] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    R. Barbieri, E. Bertuzzo, M. Farina, P. Lodone and D. Pappadopulo, A non standard supersymmetric spectrum, JHEP 08 (2010) 024 [arXiv:1004.2256] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    R. Barbieri, E. Bertuzzo, M. Farina, P. Lodone and D. Zhuridov, Minimal flavour violation with hierarchical squark masses, JHEP 12 (2010) 070 [Erratum ibid. 1102 (2011) 044] [arXiv:1011.0730] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    N. Craig, D. Green and A. Katz, (De)constructing a natural and flavorful supersymmetric standard model, JHEP 07 (2011) 045 [arXiv:1103.3708] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    T. Gherghetta, B. von Harling and N. Setzer, A natural little hierarchy for RS from accidental SUSY, JHEP 07 (2011) 011 [arXiv:1104.3171] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    Y. Kats, P. Meade, M. Reece and D. Shih, The status of GMSB After 1/fb at the LHC, JHEP 02 (2012) 115 [arXiv:1110.6444] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    M. Papucci, J.T. Ruderman and A. Weiler, Natural SUSY endures, arXiv:1110.6926 [INSPIRE].
  19. [19]
    C. Brust, A. Katz, S. Lawrence and R. Sundrum, SUSY, the third generation and the LHC, arXiv:1110.6670 [INSPIRE].
  20. [20]
    A. Delgado and M. Quirós, The least supersymmetric standard model, Phys. Rev. D 85 (2012) 015001 [arXiv:1111.0528] [INSPIRE].ADSGoogle Scholar
  21. [21]
    N. Desai and B. Mukhopadhyaya, Constraints on supersymmetry with light third family from LHC data, arXiv:1111.2830 [INSPIRE].
  22. [22]
    S. Akula, M. Liu, P. Nath and G. Peim, Naturalness, supersymmetry and implications for LHC and dark matter, Phys. Lett. B 709 (2012) 192 [arXiv:1111.4589] [INSPIRE].ADSGoogle Scholar
  23. [23]
    M. Ajaib, T. Li and Q. Shafi, Stop-neutralino coannihilation in the light of LHC, arXiv:1111.4467 [INSPIRE].
  24. [24]
    K. Ishiwata, N. Nagata and N. Yokozaki, Natural supersymmetry and bsγ constraints, arXiv:1112.1944 [INSPIRE].
  25. [25]
    P. Lodone, A motivated non-standard supersymmetric spectrum, arXiv:1112.2178 [INSPIRE].
  26. [26]
    B. He, T. Li and Q. Shafi, Impact of LHC Searches on Light Top Squark, arXiv:1112.4461 [INSPIRE].
  27. [27]
    A. Arvanitaki and G. Villadoro, A non standard model Higgs at the LHC as a sign of naturalness, arXiv:1112.4835 [INSPIRE].
  28. [28]
    R. Auzzi, A. Giveon and S.B. Gudnason, Flavor of quiver-like realizations of effective supersymmetry, JHEP 02 (2012) 069 [arXiv:1112.6261] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    C. Csáki, L. Randall and J. Terning, Light stops from Seiberg duality, arXiv:1201.1293 [INSPIRE].
  30. [30]
    E. Gorbatov and M. Sudano, Sparticle masses in Higgsed gauge mediation, JHEP 10 (2008) 066 [arXiv:0802.0555] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    H.-C. Cheng, B.A. Dobrescu and K.T. Matchev, A chiral supersymmetric standard model, Phys. Lett. B 439 (1998) 301 [hep-ph/9807246] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    H.-C. Cheng, B.A. Dobrescu and K.T. Matchev, Generic and chiral extensions of the supersymmetric standard model, Nucl. Phys. B 543 (1999) 47 [hep-ph/9811316] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    D. Kaplan, F. Lepeintre, A. Masiero, A.E. Nelson and A. Riotto, Fermion masses and gauge mediated supersymmetry breaking from a single U(1), Phys. Rev. D 60 (1999) 055003 [hep-ph/9806430] [INSPIRE].ADSGoogle Scholar
  34. [34]
    D. Kaplan and G.D. Kribs, Phenomenology of flavor mediated supersymmetry breaking, Phys. Rev. D 61 (2000) 075011 [hep-ph/9906341] [INSPIRE].ADSGoogle Scholar
  35. [35]
    L.L. Everett, P. Langacker, M. Plümacher and J. Wang, Alternative supersymmetric spectra, Phys. Lett. B 477 (2000) 233 [hep-ph/0001073] [INSPIRE].ADSGoogle Scholar
  36. [36]
    R. Dermisek, H.D. Kim and I.-W. Kim, Mediation of supersymmetry breaking in gauge messenger models, JHEP 10 (2006) 001 [hep-ph/0607169] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    P. Langacker, G. Paz, L.-T. Wang and I. Yavin, Z-mediated supersymmetry breaking, Phys. Rev. Lett. 100 (2008) 041802 [arXiv:0710.1632] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    P. Langacker, The physics of heavy Z gauge bosons, Rev. Mod. Phys. 81 (2009) 1199 [arXiv:0801.1345] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M. Buican and Z. Komargodski, Soft terms from broken symmetries, JHEP 02 (2010) 005 [arXiv:0909.4824] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    K. Intriligator and M. Sudano, General gauge mediation with gauge messengers, JHEP 06 (2010)047 [arXiv:1001.5443] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    N. Craig, D. Stolarski and J. Thaler, A fat Higgs with a magnetic personality, JHEP 11 (2011) 145 [arXiv:1106.2164] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    R. Auzzi and A. Giveon, The sparticle spectrum in minimal gaugino-gauge mediation, JHEP 10 (2010) 088 [arXiv:1009.1714] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    R. Auzzi and A. Giveon, Superpartner spectrum of minimal gaugino-gauge mediation, JHEP 01 (2011) 003 [arXiv:1011.1664] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    R. Auzzi, A. Giveon, S.B. Gudnason and T. Shacham, On the spectrum of direct gaugino mediation, JHEP 09 (2011) 108 [arXiv:1107.1414] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    R. Auzzi, A. Giveon and S.B. Gudnason, Mediation of supersymmetry breaking in quivers, JHEP 12 (2011) 016 [arXiv:1110.1453] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    ATLAS collaboration, Combination of Higgs boson searches with up to 4.9 fb 1 of pp collisions data taken at a center-of-mass energy of 7 TeV with the ATLAS experiment at the LHC, Technical Report ATLAS-CONF-2011-163, CERN, Geneva Switzerland (2011).Google Scholar
  47. [47]
    CMS collaboration, Combination of SM Higgs searches, Technical Report PAS-HIG-11-032, CERN, Geneva Switzerland (2011).Google Scholar
  48. [48]
    P. Batra, A. Delgado, D.E. Kaplan and T.M. Tait, The Higgs mass bound in gauge extensions of the minimal supersymmetric standard model, JHEP 02 (2004) 043 [hep-ph/0309149] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    A. Maloney, A. Pierce and J.G. Wacker, D-terms, unification and the Higgs mass, JHEP 06 (2006) 034 [hep-ph/0409127] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    G. Giudice and R. Rattazzi, Extracting supersymmetry breaking effects from wave function renormalization, Nucl. Phys. B 511 (1998) 25 [hep-ph/9706540] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    N. Arkani-Hamed, G.F. Giudice, M.A. Luty and R. Rattazzi, Supersymmetry breaking loops from analytic continuation into superspace, Phys. Rev. D 58 (1998) 115005 [hep-ph/9803290] [INSPIRE].ADSGoogle Scholar
  52. [52]
    M.T. Grisaru, M. Roček and R. von Unge, Effective Kähler potentials, Phys. Lett. B 383 (1996) 415 [hep-th/9605149] [INSPIRE].ADSGoogle Scholar
  53. [53]
    S. Nibbelink Groot and T.S. Nyawelo, Two loop effective Kähler potential of (non-)renormalizable supersymmetric models, JHEP 01 (2006) 034 [hep-th/0511004] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    C. Ford and D. Jones, The effective potential and the differential equations method for Feynman integrals, Phys. Lett. B 274 (1992) 409 [Erratum ibid. B 285 (1992) 399] [INSPIRE].MathSciNetADSGoogle Scholar
  55. [55]
    H. Georgi and S. Glashow, Unity of all elementary particle forces, Phys. Rev. Lett. 32 (1974) 438 [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    C. Cheung, Y. Nomura and J. Thaler, Goldstini, JHEP 03 (2010) 073 [arXiv:1002.1967] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  57. [57]
    M.A. Luty, Weak scale supersymmetry without weak scale supergravity, Phys. Rev. Lett. 89 (2002) 141801 [hep-th/0205077] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    N.J. Craig and D.R. Green, Sequestering the gravitino: neutralino dark matter in gauge mediation, Phys. Rev. D 79 (2009) 065030 [arXiv:0808.1097] [INSPIRE].ADSGoogle Scholar
  59. [59]
    C. Csáki, G.D. Kribs and J. Terning, 4 − D models of Scherk-Schwarz GUT breaking via deconstruction, Phys. Rev. D 65 (2002) 015004 [hep-ph/0107266] [INSPIRE].ADSGoogle Scholar
  60. [60]
    M. Dine, N. Seiberg and S. Thomas, Higgs physics as a window beyond the MSSM (BMSSM), Phys. Rev. D 76 (2007) 095004 [arXiv:0707.0005] [INSPIRE].ADSGoogle Scholar
  61. [61]
    B. Grinstein, M. Redi and G. Villadoro, Low scale flavor gauge symmetries, JHEP 11 (2010) 067 [arXiv:1009.2049] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    P. Draper, P. Meade, M. Reece and D. Shih, Implications of a 125 GeV Higgs for the MSSM and low-scale SUSY breaking, arXiv:1112.3068 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Nathaniel Craig
    • 1
    • 2
  • Matthew McCullough
    • 3
    Email author
  • Jesse Thaler
    • 3
  1. 1.Institute for Advanced StudyPrincetonU.S.A
  2. 2.Department of Physics and AstronomyRutgers UniversityPiscatawayU.S.A
  3. 3.Center for Theoretical PhysicsMassachusetts Institute of TechnologyCambridgeU.S.A

Personalised recommendations