Advertisement

The ABCDEFG of instantons and W-algebras

  • Christoph A. Keller
  • Noppadol Mekareeya
  • Jaewon SongEmail author
  • Yuji Tachikawa
Article

Abstract

For arbitrary gauge groups, we check at the one-instanton level that the Nekrasov partition function of pure \( \mathcal{N} = {2} \) super Yang-Mills is equal to the norm of a certain coherent state of the corresponding W-algebra. For non-simply-laced gauge groups, we confirm in particular that the coherent state is in the twisted sector of a simply-laced W-algebra.

Keywords

Supersymmetric gauge theory Duality in Gauge Field Theories Solitons Monopoles and Instantons Conformal and W Symmetry 

Supplementary material

13130_2012_3595_MOESM1_ESM.pdf (383 kb)
ESM 1 (PDF 383 kb)

References

  1. [1]
    N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    A. Klemm, W. Lerche, P. Mayr, C. Vafa and N.P. Warner, Selfdual strings and N = 2 supersymmetric field theory, Nucl. Phys. B 477 (1996) 746 [hep-th/9604034] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    E. Witten, Solutions of four-dimensional field theories via M-theory, Nucl. Phys. B 500 (1997) 3 [hep-th/9703166] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    D. Gaiotto, N = 2 dualities, arXiv:0904.2715 [INSPIRE].
  6. [6]
    D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin Systems and the WKB Approximation, arXiv:0907.3987 [INSPIRE].
  7. [7]
    A. Klemm, M. Mariño and S. Theisen, Gravitational corrections in supersymmetric gauge theory and matrix models, JHEP 03 (2003) 051 [hep-th/0211216] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    R. Dijkgraaf, A. Sinkovics and M. Temurhan, Matrix models and gravitational corrections, Adv. Theor. Math. Phys. 7 (2004) 1155 [hep-th/0211241] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  9. [9]
    H. Fuji and S. Mizoguchi, Gravitational corrections for supersymmetric gauge theories with flavors via matrix models, Nucl. Phys. B 698 (2004) 53 [hep-th/0405128] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    E. Witten, On S duality in Abelian gauge theory, Selecta Math. 1 (1995) 383 [hep-th/9505186] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    G.W. Moore and E. Witten, Integration over the u plane in Donaldson theory, Adv. Theor. Math. Phys. 1 (1998) 298 [hep-th/9709193] [INSPIRE].MathSciNetGoogle Scholar
  12. [12]
    M. Aganagic, A. Klemm, M. Mariño and C. Vafa, The Topological vertex, Commun. Math. Phys. 254 (2005) 425 [hep-th/0305132] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  13. [13]
    N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, hep-th/0306238 [INSPIRE].
  14. [14]
    R. Dijkgraaf, L. Hollands, P. Sulkowski and C. Vafa, Supersymmetric gauge theories, intersecting branes and free fermions, JHEP 02 (2008) 106 [arXiv:0709.4446] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. [16]
    N. Wyllard, A(N-1) conformal Toda field theory correlation functions from conformal N = 2 SU(N) quiver gauge theories, JHEP 11 (2009) 002 [arXiv:0907.2189] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    G. Bonelli and A. Tanzini, Hitchin systems, N = 2 gauge theories and W-gravity, Phys. Lett. B 691 (2010) 111 [arXiv:0909.4031] [INSPIRE].MathSciNetADSGoogle Scholar
  18. [18]
    H. Itoyama, K. Maruyoshi and T. Oota, The Quiver Matrix Model and 2d-4d Conformal Connection, Prog. Theor. Phys. 123 (2010) 957 [arXiv:0911.4244] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  19. [19]
    L. Hollands, C.A. Keller and J. Song, From SO/Sp instantons to W-algebra blocks, JHEP 03 (2011) 053 [arXiv:1012.4468] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    L. Hollands, C.A. Keller and J. Song, Towards a 4d/2d correspondence for Sicilian quivers, JHEP 10 (2011) 100 [arXiv:1107.0973] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    D. Gaiotto, Asymptotically free N = 2 theories and irregular conformal blocks, arXiv:0908.0307 [INSPIRE].
  22. [22]
    A. Marshakov, A. Mironov and A. Morozov, On non-conformal limit of the AGT relations, Phys. Lett. B 682 (2009) 125 [arXiv:0909.2052] [INSPIRE].MathSciNetADSGoogle Scholar
  23. [23]
    M. Taki, On AGT Conjecture for Pure Super Yang-Mills and W-algebra, JHEP 05 (2011) 038 [arXiv:0912.4789] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    E. B. Vinberg and V. L. Popov, On a class of quasihomogeneous affine varieties, Math. USSR-Izv. 6 (1972) 743.CrossRefGoogle Scholar
  25. [25]
    D. Garfinkle, A new construction of the Joseph ideal, Chap. III (1982), http://hdl.handle.net/1721.1/15620.
  26. [26]
    S. Benvenuti, A. Hanany and N. Mekareeya, The Hilbert Series of the One Instanton Moduli Space, JHEP 06 (2010) 100 [arXiv:1005.3026] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    M. Bershadsky and H. Ooguri, Hidden SL(n) Symmetry in Conformal Field Theories, Commun. Math. Phys. 126 (1989) 49 [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  28. [28]
    B. Feigin and E. Frenkel, Quantization of the Drinfeld-Sokolov reduction, Phys. Lett. B 246 (1990) 75 [INSPIRE].MathSciNetADSGoogle Scholar
  29. [29]
    P. Bouwknegt and K. Schoutens, W symmetry in conformal field theory, Phys. Rept. 223 (1993) 183 [hep-th/9210010] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    K. Thielemans, A Mathematica package for computing operator product expansions, Int. J. Mod. Phys. C 2 (1991) 787 [INSPIRE].MathSciNetADSGoogle Scholar
  31. [31]
    E.J. Martinec and N.P. Warner, Integrable systems and supersymmetric gauge theory, Nucl. Phys. B 459 (1996) 97 [hep-th/9509161] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    A. Klemm, W. Lerche, S. Yankielowicz and S. Theisen, Simple singularities and N = 2 supersymmetric Yang-Mills theory, Phys. Lett. B 344 (1995) 169 [hep-th/9411048] [INSPIRE].MathSciNetADSGoogle Scholar
  33. [33]
    A. Gorsky, I. Krichever, A. Marshakov, A. Mironov and A. Morozov, Integrability and Seiberg-Witten exact solution, Phys. Lett. B 355 (1995) 466 [hep-th/9505035] [INSPIRE].MathSciNetADSGoogle Scholar
  34. [34]
    H. Itoyama and A. Morozov, Integrability and Seiberg-Witten theory: Curves and periods, Nucl. Phys. B 477 (1996) 855 [hep-th/9511126] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    W. Lerche and N. Warner, Exceptional SW geometry from ALE fibrations, Phys. Lett. B 423 (1998) 79 [hep-th/9608183] [INSPIRE].MathSciNetADSGoogle Scholar
  36. [36]
    T.J. Hollowood, Strong coupling N = 2 gauge theory with arbitrary gauge group, Adv. Theor. Math. Phys. 2 (1998) 335 [hep-th/9710073] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  37. [37]
    D.-E. Diaconescu, R. Donagi and T. Pantev, Intermediate Jacobians and ADE Hitchin Systems, hep-th/0607159 [INSPIRE].
  38. [38]
    P. Slodowy, Simple Singularities and Simple Algebraic Groups, Lecture Notes in Mathematics 815, Springer (1980).Google Scholar
  39. [39]
    J. Fuchs, B. Schellekens and C. Schweigert, From Dynkin diagram symmetries to fixed point structures, Commun. Math. Phys. 180 (1996) 39 [hep-th/9506135] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  40. [40]
    N.J. Evans, C.V. Johnson and A.D. Shapere, Orientifolds, branes and duality of 4 − D gauge theories, Nucl. Phys. B 505 (1997) 251 [hep-th/9703210] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    K. Landsteiner, E. Lopez and D.A. Lowe, N = 2 supersymmetric gauge theories, branes and orientifolds, Nucl. Phys. B 507 (1997) 197 [hep-th/9705199] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    A. Brandhuber, J. Sonnenschein, S. Theisen and S. Yankielowicz, M theory and Seiberg-Witten curves: Orthogonal and symplectic groups, Nucl. Phys. B 504 (1997) 175 [hep-th/9705232] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    A. Braverman, Instanton counting via affine Lie algebras. 1. Equivariant J functions of (affine) flag manifolds and Whittaker vectors, in Workshop on algebraic structures and moduli spaces: CRM Workshop, J. Hurturbise and E. Markman eds. AMS, (2003), math/0401409 [INSPIRE].
  44. [44]
    A. Braverman and P. Etingof, Instanton counting via affine Lie algebras II: From Whittaker vectors to the Seiberg-Witten prepotential, in Studies in Lie Theory: dedicated to A. Joseph on his 60th birthday, J. Bernstein, V. Hinich, and A. Melnikov eds., Birkhäuser (2006), math/0409441 [INSPIRE].
  45. [45]
    N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2004) 831 [hep-th/0206161] [INSPIRE].MathSciNetGoogle Scholar
  46. [46]
    D. Finnell and P. Pouliot, Instanton calculations versus exact results in four-dimensional SUSY gauge theories, Nucl. Phys. B 453 (1995) 225 [hep-th/9503115] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    K. Ito and N. Sasakura, One instanton calculations in N = 2 supersymmetric SU(N(c)) Yang-Mills theory, Phys. Lett. B 382 (1996) 95 [hep-th/9602073] [INSPIRE].MathSciNetADSGoogle Scholar
  48. [48]
    N. Dorey, T.J. Hollowood, V.V. Khoze and M.P. Mattis, The Calculus of many instantons, Phys. Rept. 371 (2002) 231 [hep-th/0206063] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  49. [49]
    N. Nekrasov and S. Shadchin, ABCD of instantons, Commun. Math. Phys. 252 (2004) 359 [hep-th/0404225] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  50. [50]
    M. Mariño and N. Wyllard, A Note on instanton counting for N = 2 gauge theories with classical gauge groups, JHEP 05 (2004) 021 [hep-th/0404125] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    C.W. Bernard, N.H. Christ, A.H. Guth and E.J. Weinberg, Pseudoparticle Parameters for Arbitrary Gauge Groups, Phys. Rev. D 16 (1977) 2967 [INSPIRE].MathSciNetADSGoogle Scholar
  52. [52]
    A. Vainshtein, V.I. Zakharov, V. Novikov and M.A. Shifman, ABC’s of Instantons, Sov. Phys. Usp. 25 (1982) 195 [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    P. Kronheimer, Instantons and the geometry of the nilpotent variety, J. Diff. Geom. 32 (1990) 473 [INSPIRE].MathSciNetzbMATHGoogle Scholar
  54. [54]
    R. Brylinski, Instantons and Kähler geometry of nilpotent orbits, math/9811032. Published in Representation Theories and Algebraic Geometry. ASI NATO Series, Edited by A. Broer, Kluwer 1998, pp. 85-125 [INSPIRE].
  55. [55]
    P. Kobak and A. Swann, The HyperK\”ahler Geometry Associated to Wolf Spaces, math/0001025.
  56. [56]
    K. Ito and N. Sasakura, Exact and microscopic one instanton calculations in N = 2 supersymmetric Yang-Mills theories, Nucl. Phys. B 484 (1997) 141 [hep-th/9608054] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  57. [57]
    V. Drinfeld and V. Sokolov, Lie algebras and equations of Korteweg-de Vries type, J. Sov. Math. 30 (1984) 1975 [INSPIRE].CrossRefGoogle Scholar
  58. [58]
    V. Fateev and S.L. Lukyanov, The Models of Two-Dimensional Conformal Quantum Field Theory with Z(n) Symmetry, Int. J. Mod. Phys. A 3 (1988) 507 [INSPIRE].MathSciNetADSGoogle Scholar
  59. [59]
    S.L. Lukyanov and V. Fateev, Conformally invariant models of two-dimensional QFT with Z(N) symmetry, Sov. Phys. JETP 67 (1988) 447 [INSPIRE].MathSciNetGoogle Scholar
  60. [60]
    S.L. Lukyanov and V. Fateev, Exactly solvable models of conformal quantum theory associated with simple lie algebra D(N). (in russian), Sov. J. Nucl. Phys. 49 (1989) 925 [INSPIRE].MathSciNetGoogle Scholar
  61. [61]
    S. L. Lukyanov and V. A. Fateev, Additional symmetries and exactly soluble models in two-dimensional conformal field theory, Soviet Scientific Reviews Series, Physics reviews A 15.2 Chur, Switzerland, Harwood ed. (1990).Google Scholar
  62. [62]
    K. Ito and S. Terashima, Free field realization of WBC(n) and WG 2 algebras, Phys. Lett. B 354 (1995) 220 [hep-th/9503165] [INSPIRE].MathSciNetADSGoogle Scholar
  63. [63]
    U. Bruzzo, F. Fucito, J.F. Morales and A. Tanzini, Multiinstanton calculus and equivariant cohomology, JHEP 05 (2003) 054 [hep-th/0211108] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  64. [64]
    H. Nakajima and K. Yoshioka, Instanton counting on blowup. 1., math/0306198 [INSPIRE].
  65. [65]
    D. Maulik and A. Okounkov, private communication.Google Scholar
  66. [66]
    V. I. Arnol’d, Critical points of functions on a manifold with boundary, the simple Lie groups B k , C k , F 4 and singularities of evolutes, Uspekhi Mat. Nauk 33 (1978) 91.MathSciNetzbMATHGoogle Scholar
  67. [67]
    S. Mizoguchi, Determinant formula and unitarity for the W(3) Algebra, Phys. Lett. B 222 (1989) 226 [INSPIRE].MathSciNetADSGoogle Scholar
  68. [68]
    V.G. Kac and M. Wakimoto, Quantum reduction in the twisted case, arXiv:math-ph/0404049.

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Christoph A. Keller
    • 1
  • Noppadol Mekareeya
    • 2
  • Jaewon Song
    • 1
    Email author
  • Yuji Tachikawa
    • 3
  1. 1.California Institute of TechnologyPasadenaUSA
  2. 2.Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)MünchenDeutschland
  3. 3.IPMU, University of TokyoKashiwaJapan

Personalised recommendations