Advertisement

Predicting θ 13 and the neutrino mass scale from quark lepton mass hierarchies

  • W. Buchmüller
  • V. DomckeEmail author
  • K. Schmitz
Open Access
Article

Abstract

Flavour symmetries of Froggatt-Nielsen type can naturally reconcile the large quark and charged lepton mass hierarchies and the small quark mixing angles with the observed small neutrino mass hierarchies and their large mixing angles. We point out that such a flavour structure, together with the measured neutrino mass squared differences and mixing angles, strongly constrains yet undetermined parameters of the neutrino sector. Treating unknown \( \mathcal{O} \)(1) parameters as random variables, we obtain surprisingly accurate predictions for the smallest mixing angle, \( {\text{si}}{{\text{n}}^{{2}}}{2}{\theta_{{{13}}}} = 0.0{7}_{{ - 0.05}}^{{ + 0.11}} \), the smallest neutrino mass, \( {m_{{1}}} = {2}.{2}_{{ - {1}.{4}}}^{{ + 1.7}} \times {1}{0^{{ - {3}}}}{\text{eV}} \), and one Majorana phase, \( {\alpha_{{{21}}}}/\pi = {1}.0_{{ - 0.2}}^{{ + 0.2}}. \)

Keywords

Beyond Standard Model Neutrino Physics CP violation Solar and Atmospheric Neutrinos 

References

  1. [1]
    S. Raby, SUSY GUT model building, Eur. Phys. J. C 59 (2009) 223 [arXiv:0807.4921] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    C. Froggatt and H.B. Nielsen, Hierarchy of quark masses, Cabibbo angles and CP-violation, Nucl. Phys. B 147 (1979) 277 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    Y. Grossman and M. Neubert, Neutrino masses and mixings in nonfactorizable geometry, Phys. Lett. B 474 (2000) 361 [hep-ph/9912408] [INSPIRE].MathSciNetADSGoogle Scholar
  4. [4]
    T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    W. Buchmüller, K. Hamaguchi, O. Lebedev and M. Ratz, Supersymmetric standard model from the heterotic string (II), Nucl. Phys. B 785 (2007) 149 [hep-th/0606187] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J. Sato and T. Yanagida, Large lepton mixing in a coset space family unification on E 7 /SU(5) × U(1)3, Phys. Lett. B 430 (1998) 127 [hep-ph/9710516] [INSPIRE].ADSGoogle Scholar
  7. [7]
    N. Irges, S. Lavignac and P. Ramond, Predictions from an anomalous U(1) model of Yukawa hierarchies, Phys. Rev. D 58 (1998) 035003 [hep-ph/9802334] [INSPIRE].ADSGoogle Scholar
  8. [8]
    W. Buchmüller and T. Yanagida, Quark lepton mass hierarchies and the baryon asymmetry, Phys. Lett. B 445 (1999) 399 [hep-ph/9810308] [INSPIRE].ADSGoogle Scholar
  9. [9]
    F. Vissani, Large mixing, family structure and dominant block in the neutrino mass matrix, JHEP 11 (1998) 025 [hep-ph/9810435] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    L.J. Hall, H. Murayama and N. Weiner, Neutrino mass anarchy, Phys. Rev. Lett. 84 (2000) 2572 [hep-ph/9911341] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    J. Sato and T. Yanagida, Low-energy predictions of lopsided family charges, Phys. Lett. B 493 (2000) 356 [hep-ph/0009205] [INSPIRE].ADSGoogle Scholar
  12. [12]
    F. Vissani, Expected properties of massive neutrinos for mass matrices with a dominant block and random coefficients order unity, Phys. Lett. B 508 (2001) 79 [hep-ph/0102236] [INSPIRE].ADSGoogle Scholar
  13. [13]
    T2K collaboration, K. Abe et al., Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam, Phys. Rev. Lett. 107 (2011) 041801 [arXiv:1106.2822] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    MINOS collaboration, P. Adamson et al., Improved search for muon-neutrino to electron-neutrino oscillations in MINOS, Phys. Rev. Lett. 107 (2011) 181802 [arXiv:1108.0015] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    H. de Kerrect, First results from the Double Chooz experiment, talk given at the 6th International Workshop on Low Energy Neutrino Physics (LowN u11), November 9-12, Seoul, Korea (2011).Google Scholar
  16. [16]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSGoogle Scholar
  17. [17]
    W. Buchmüller, K. Schmitz and G. Vertongen, Matter and dark matter from false vacuum decay, Phys. Lett. B 693 (2010) 421 [arXiv:1008.2355] [INSPIRE].ADSGoogle Scholar
  18. [18]
    W. Buchmüller, K. Schmitz and G. Vertongen, Entropy, baryon asymmetry and dark matter from heavy neutrino decays, Nucl. Phys. B 851 (2011) 481 [arXiv:1104.2750] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    W. Buchmuller, V. Domcke and K. Schmitz, Spontaneous B-L breaking as the origin of the hot early universe, arXiv:1202.6679 [INSPIRE].
  20. [20]
    G. Cowan, Statistical data analysis, Clarendon Press, Oxford U.K. (1998).Google Scholar
  21. [21]
    Planck collaboration, G. Efstathiou et al., The scientific programme of Planck, ESA-SCI (2005)1 [astro-ph/0604069] [INSPIRE].
  22. [22]
    KATRIN collaboration, M. Beck, The KATRIN experiment, J. Phys. Conf. Ser. 203 (2010) 012097 [arXiv:0910.4862] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    H. Klapdor-Kleingrothaus, A. Dietz, H. Harney and I. Krivosheina, Evidence for neutrinoless double beta decay, Mod. Phys. Lett. A 16 (2001) 2409 [hep-ph/0201231] [INSPIRE].ADSGoogle Scholar
  24. [24]
    GERDA collaboration, G. Meierhofer, GERDA: a new neutrinoless double beta experiment using Ge-76, J. Phys. Conf. Ser. 312 (2011) 072011 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].ADSGoogle Scholar
  26. [26]
    W. Buchmüller, R. Peccei and T. Yanagida, Leptogenesis as the origin of matter, Ann. Rev. Nucl. Part. Sci. 55 (2005) 311 [hep-ph/0502169] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105 [arXiv:0802.2962] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    S. Davidson and A. Ibarra, A lower bound on the right-handed neutrino mass from leptogenesis, Phys. Lett. B 535 (2002) 25 [hep-ph/0202239] [INSPIRE].ADSGoogle Scholar
  29. [29]
    K. Hamaguchi, H. Murayama and T. Yanagida, Leptogenesis from N dominated early universe, Phys. Rev. D 65 (2002) 043512 [hep-ph/0109030] [INSPIRE].ADSGoogle Scholar
  30. [30]
    G. Altarelli, F. Feruglio and I. Masina, Models of neutrino masses: anarchy versus hierarchy, JHEP 01 (2003) 035 [hep-ph/0210342] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    I. Masina and C.A. Savoy, On power and complementarity of the experimental constraints on seesaw models, Phys. Rev. D 71 (2005) 093003 [hep-ph/0501166] [INSPIRE].ADSGoogle Scholar
  32. [32]
    F. Plentinger, G. Seidl and W. Winter, The seesaw mechanism in quark-lepton complementarity, Phys. Rev. D 76 (2007) 113003 [arXiv:0707.2379] [INSPIRE].ADSGoogle Scholar
  33. [33]
    F. Plentinger, G. Seidl and W. Winter, Systematic parameter space search of extended quark-lepton complementarity, Nucl. Phys. B 791 (2008) 60 [hep-ph/0612169] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    T. Asaka, W. Buchmüller and L. Covi, Quarks and leptons between branes and bulk, Phys. Lett. B 563 (2003) 209 [hep-ph/0304142] [INSPIRE].ADSGoogle Scholar
  35. [35]
    G. Altarelli and F. Feruglio, Discrete Flavor Symmetries and Models of Neutrino Mixing, Rev. Mod. Phys. 82 (2010) 2701 [arXiv:1002.0211] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    H. Ishimori et al., Non-abelian discrete symmetries in particle physics, Prog. Theor. Phys. Suppl. 183 (2010) 1 [arXiv:1003.3552] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Deutsches Elektronen-Synchrotron DESYHamburgGermany

Personalised recommendations