Advertisement

Different SO(10) paths to fermion masses and mixings

  • Guido Altarelli
  • Gianluca Blankenburg
Open Access
Article

Abstract

Recently SO(10) models with type-II see-saw dominance have been proposed as a promising framework for obtaining Grand Unification theories with approximate Tribimaximal (TB) mixing in the neutrino sector. We make a general study of SO(10) models with type-II see-saw dominance and show that an excellent fit can be obtained for fermion masses and mixings, also including the neutrino sector. To make this statement more significant we compare the performance of type-II see-saw dominance models in fitting the fermion masses and mixings with more conventional models which have no built-in TB mixing in the neutrino sector. For a fair comparison the same input data and fitting procedure is adopted for all different theories. We find that the type-II dominance models lead to an excellent fit, comparable with the best among the available models, but the tight structure of this framework implies a significantly larger amount of fine tuning with respect to other approaches.

Keywords

GUT Quark Masses and SM Parameters Neutrino Physics 

References

  1. [1]
    G. Altarelli and F. Feruglio, Models of neutrino masses and mixings, New J. Phys. 6 (2004) 106 [hep-ph/0405048] [SPIRES].ADSCrossRefGoogle Scholar
  2. [2]
    G. Altarelli, Status of neutrino masses and mixing in 2009, Nuovo Cim. C32N5-6 (2009) 91 [arXiv:0905.3265] [SPIRES].Google Scholar
  3. [3]
    R.N. Mohapatra and A.Y. Smirnov, Neutrino mass and new physics, Ann. Rev. Nucl. Part. Sci. 56 (2006) 569 [hep-ph/0603118] [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    W. Grimus, Neutrino physics: models for neutrino masses and lepton mixing, PoS P 2GC (2006) 001 [hep-ph/0612311] [SPIRES].Google Scholar
  5. [5]
    M.C. Gonzalez-Garcia and M. Maltoni, Phenomenology with massive neutrinos, Phys. Rept. 460 (2008) 1 [arXiv:0704.1800] [SPIRES].ADSCrossRefGoogle Scholar
  6. [6]
    G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo and A.M. Rotunno, Hints of θ 13 > 0 from global neutrino data analysis, Phys. Rev. Lett. 101 (2008) 141801 [arXiv:0806.2649] [SPIRES].ADSCrossRefGoogle Scholar
  7. [7]
    G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo and A.M. Rotunno, What we (would like to) know about the neutrino mass, arXiv:0809.2936 [SPIRES].
  8. [8]
    T. Schwetz, M.A. Tortola and J.W.F. Valle, Three-flavour neutrino oscillation update, New J. Phys. 10 (2008) 113011 [arXiv:0808.2016] [SPIRES].ADSCrossRefGoogle Scholar
  9. [9]
    M. Maltoni and T. Schwetz, Three-flavour neutrino oscillation update and comments on possible hints for a non-zero θ 13, PoS IDM2008 (2008) 072 [arXiv:0812.3161] [SPIRES].Google Scholar
  10. [10]
    P.F. Harrison, D.H. Perkins and W.G. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [SPIRES].ADSGoogle Scholar
  11. [11]
    P.F. Harrison and W.G. Scott, Symmetries and generalisations of tri-bimaximal neutrino mixing, Phys. Lett. B 535 (2002) 163 [hep-ph/0203209] [SPIRES].ADSGoogle Scholar
  12. [12]
    P.F. Harrison and W.G. Scott, μτ reflection symmetry in lepton mixing and neutrino oscillations, Phys. Lett. B 547 (2002) 219 [hep-ph/0210197] [SPIRES].ADSGoogle Scholar
  13. [13]
    P.F. Harrison and W.G. Scott, Permutation symmetry, tri-bimaximal neutrino mixing and the S3 group characters, Phys. Lett. B 557 (2003) 76 [hep-ph/0302025] [SPIRES].MathSciNetADSGoogle Scholar
  14. [14]
    P.F. Harrison and W.G. Scott, Status of tri-/bi-maximal neutrino mixing, hep-ph/0402006 [SPIRES].
  15. [15]
    P.F. Harrison and W.G. Scott, The simplest neutrino mass matrix, Phys. Lett. B 594 (2004) 324 [hep-ph/0403278] [SPIRES].ADSGoogle Scholar
  16. [16]
    G. Altarelli and F. Feruglio, Discrete flavor symmetries and models of neutrino mixing, Rev. Mod. Phys. 82 (2010) 2701 [arXiv:1002.0211] [SPIRES].ADSCrossRefGoogle Scholar
  17. [17]
    G. Altarelli, F. Feruglio and C. Hagedorn, A SUSY SU(5) grand unified model of tri-bimaximal mixing from A 4, JHEP 03 (2008) 052 [arXiv:0802.0090] [SPIRES].ADSCrossRefGoogle Scholar
  18. [18]
    G. Altarelli, F. Feruglio and I. Masina, Can neutrino mixings arise from the charged lepton sector?, Nucl. Phys. B 689 (2004) 157 [hep-ph/0402155] [SPIRES].ADSCrossRefGoogle Scholar
  19. [19]
    M.-C. Chen and K.T. Mahanthappa, CKM and tri-bimaximal MNS matrices in a SU(5) × (d)T model, Phys. Lett. B 652 (2007) 34 [arXiv:0705.0714] [SPIRES];ADSCrossRefGoogle Scholar
  20. [20]
    C. Hagedorn, S.F. King and C. Luhn, A SUSY GUT of flavour with S 4 × SU(5) to NLO, JHEP 06 (2010) 048 [arXiv:1003.4249] [SPIRES].ADSCrossRefGoogle Scholar
  21. [21]
    H. Ishimori, K. Saga, Y. Shimizu and M. Tanimoto, Tri-bimaximal mixing and Cabibbo angle in S 4 flavor model with SUSY, Phys. Rev. D 81 (2010) 115009 [arXiv:1004.5004] [SPIRES].ADSGoogle Scholar
  22. [22]
    T.J. Burrows and S.F. King, A 4 × SU(5) SUSY GUT of flavour in 8d, Nucl. Phys. B 842 (2011) 107 [arXiv:1007.2310] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    G. Lazarides, Q. Shafi and C. Wetterich, Proton lifetime and fermion masses in an SO(10) model, Nucl. Phys. B 181 (1981) 287 [SPIRES].ADSCrossRefGoogle Scholar
  24. [24]
    J. Schechter and J.W.F. Valle, Neutrino Masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [SPIRES].ADSGoogle Scholar
  25. [25]
    R.N. Mohapatra and G. Senjanović, Neutrino masses and mixings in gauge models with spontaneous parity violation, Phys. Rev. D 23 (1981) 165 [SPIRES].ADSGoogle Scholar
  26. [26]
    P. Minkowski, μeγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [SPIRES].ADSGoogle Scholar
  27. [27]
    T. Yanagida, in the proceedings of the Workshop on Unified Theories, KEK Report 79–18, O. Sawada and A. Sugamoto eds., Tsukuba Japan (1979) p. 95.Google Scholar
  28. [28]
    M. Gell-Mann, P. Ramond and R. Slansky, Supergravity, North Holland, Amsterdam Netherlands (1979) p. 315.Google Scholar
  29. [29]
    S.L. Glashow, The future of elementary particle physics, in the proceedings of the 1979 Cargese Summer Institute on Quarks and Leptons, M. Lévy et al. eds., Plenum, New York U.S.A. (1980) p. 687.Google Scholar
  30. [30]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [SPIRES].ADSCrossRefGoogle Scholar
  31. [31]
    C.H. Albright and W. Rodejohann, Model-independent analysis of tri-bimaximal mixing: a softly-broken hidden or an accidental symmetry?, Phys. Lett. B 665 (2008) 378 [arXiv:0804.4581] [SPIRES].ADSGoogle Scholar
  32. [32]
    R. Dermisek and S. Raby, Bi-large neutrino mixing and CP-violation in an SO(10) SUSY GUT for fermion masses, Phys. Lett. B 622 (2005) 327 [hep-ph/0507045] [SPIRES].ADSGoogle Scholar
  33. [33]
    R. Dermisek, M. Harada and S. Raby, SO(10) SUSY GUT for fermion masses: lepton flavor and CP-violation, Phys. Rev. D 74 (2006) 035011 [hep-ph/0606055] [SPIRES].ADSGoogle Scholar
  34. [34]
    R. Barbieri, L.J. Hall, S. Raby and A. Romanino, Unified theories with U(2) flavor symmetry, Nucl. Phys. B 493 (1997) 3 [hep-ph/9610449] [SPIRES].ADSGoogle Scholar
  35. [35]
    C.H. Albright and S.M. Barr, Construction of a minimal Higgs SO(10) SUSY GUT model, Phys. Rev. D 62 (2000) 093008 [hep-ph/0003251] [SPIRES].ADSGoogle Scholar
  36. [36]
    C.H. Albright and S.M. Barr, Realization of the large mixing angle solar neutrino solution in an SO(10) supersymmetric grand unified model, Phys. Rev. D 64 (2001) 073010 [hep-ph/0104294] [SPIRES].ADSGoogle Scholar
  37. [37]
    S.M. Barr and S. Raby, Minimal SO(10) unification, Phys. Rev. Lett. 79 (1997) 4748 [hep-ph/9705366] [SPIRES].ADSCrossRefGoogle Scholar
  38. [38]
    X.-d. Ji, Y.-c. Li and R.N. Mohapatra, An SO(10) GUT model with lopsided mass matrix and neutrino mixing angle θ 13, Phys. Lett. B 633 (2006) 755 [hep-ph/0510353] [SPIRES].ADSGoogle Scholar
  39. [39]
    K.S. Babu and R.N. Mohapatra, Predictive neutrino spectrum in minimal SO(10) grand unification, Phys. Rev. Lett. 70 (1993) 2845 [hep-ph/9209215] [SPIRES].ADSCrossRefGoogle Scholar
  40. [40]
    K.S. Babu and C. Macesanu, Neutrino masses and mixings in a minimal SO(10) model, Phys. Rev. D 72 (2005) 115003 [hep-ph/0505200] [SPIRES].ADSGoogle Scholar
  41. [41]
    B. Brahmachari and R.N. Mohapatra, Unified explanation of the solar and atmospheric neutrino puzzles in a minimal supersymmetric SO(10) model, Phys. Rev. D 58 (1998) 015001 [hep-ph/9710371] [SPIRES].ADSGoogle Scholar
  42. [42]
    B. Bajc, G. Senjanović and F. Vissani, How neutrino and charged fermion masses are connected within minimal supersymmetric SO(10), hep-ph/0110310 [SPIRES].
  43. [43]
    B. Bajc, G. Senjanović and F. Vissani, bτ unification and large atmospheric mixing: A case for non-canonical see-saw, Phys. Rev. Lett. 90 (2003) 051802 [hep-ph/0210207] [SPIRES].ADSCrossRefGoogle Scholar
  44. [44]
    B. Bajc, A. Melfo, G. Senjanović and F. Vissani, Fermion mass relations in a supersymmetric SO(10) theory, Phys. Lett. B 634 (2006) 272 [hep-ph/0511352] [SPIRES].ADSGoogle Scholar
  45. [45]
    T. Fukuyama, A. Ilakovac, T. Kikuchi, S. Meljanac and N. Okada, General formulation for proton decay rate in minimal supersymmetric SO(10) GUT, Eur. Phys. J. C 42 (2005) 191 [hep-ph/0401213] [SPIRES].ADSCrossRefGoogle Scholar
  46. [46]
    T. Fukuyama, A. Ilakovac, T. Kikuchi, S. Meljanac and N. Okada, SO(10) group theory for the unified model building, J. Math. Phys. 46 (2005) 033505 [hep-ph/0405300] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    T. Fukuyama, A. Ilakovac, T. Kikuchi, S. Meljanac and N. Okada, Higgs masses in the minimal SUSY SO(10) GUT, Phys. Rev. D 72 (2005) 051701 [hep-ph/0412348] [SPIRES].ADSGoogle Scholar
  48. [48]
    B. Bajc, I. Dorsner and M. Nemevšek, Minimal SO(10) splits supersymmetry, JHEP 11 (2008) 007 [arXiv:0809.1069] [SPIRES].ADSCrossRefGoogle Scholar
  49. [49]
    H.S. Goh, R.N. Mohapatra and S.-P. Ng, Minimal SUSY SO(10), b τ unification and large neutrino mixings, Phys. Lett. B 570 (2003) 215 [hep-ph/0303055] [SPIRES].ADSGoogle Scholar
  50. [50]
    H.S. Goh, R.N. Mohapatra and S.-P. Ng, Minimal SUSY SO(10) model and predictions for neutrino mixings and leptonic CP-violation, Phys. Rev. D 68 (2003) 115008 [hep-ph/0308197] [SPIRES].ADSGoogle Scholar
  51. [51]
    H.S. Goh, R.N. Mohapatra and S. Nasri, SO(10) symmetry breaking and type-II seesaw, Phys. Rev. D 70 (2004) 075022 [hep-ph/0408139] [SPIRES].ADSGoogle Scholar
  52. [52]
    C.S. Aulakh, B. Bajc, A. Melfo, G. Senjanović and F. Vissani, The minimal supersymmetric grand unified theory, Phys. Lett. B 588 (2004) 196 [hep-ph/0306242] [SPIRES].ADSGoogle Scholar
  53. [53]
    C.S. Aulakh and S.K. Garg, MSGUT: From bloom to doom, Nucl. Phys. B 757 (2006) 47 [hep-ph/0512224] [SPIRES].ADSCrossRefGoogle Scholar
  54. [54]
    C.S. Aulakh and S.K. Garg, The new minimal supersymmetric GUT, hep-ph/0612021 [SPIRES].
  55. [55]
    C.S. Aulakh and S.K. Garg, Nmsgut II: Pinning the Nmsgut@LHC, arXiv:0807.0917 [SPIRES].
  56. [56]
    A. Melfo, A. Ramirez and G. Senjanović, Type II see-saw dominance in SO(10), Phys. Rev. D 82 (2010) 075014 [arXiv:1005.0834] [SPIRES].ADSGoogle Scholar
  57. [57]
    S. Bertolini, M. Frigerio and M. Malinsky, Fermion masses in SUSY SO(10) with type-II seesaw: A non-minimal predictive scenario, Phys. Rev. D 70 (2004) 095002 [hep-ph/0406117] [SPIRES].ADSGoogle Scholar
  58. [58]
    S. Bertolini and M. Malinsky, On CP-violation in minimal renormalizable SUSY SO(10) and beyond, Phys. Rev. D 72 (2005) 055021 [hep-ph/0504241] [SPIRES];ADSGoogle Scholar
  59. [59]
    S. Bertolini, T. Schwetz and M. Malinsky, Fermion masses and mixings in SO(10) models and the neutrino challenge to SUSY GUTs, Phys. Rev. D 73 (2006) 115012 [hep-ph/0605006] [SPIRES].ADSGoogle Scholar
  60. [60]
    B. Dutta, Y. Mimura and R.N. Mohapatra, Neutrino masses and mixings in a predictive SO(10) model with CKM CP-violation, Phys. Lett. B 603 (2004) 35 [hep-ph/0406262] [SPIRES].ADSGoogle Scholar
  61. [61]
    B. Dutta, Y. Mimura and R.N. Mohapatra, Suppressing proton decay in the minimal SO(10) model, Phys. Rev. Lett. 94 (2005) 091804 [hep-ph/0412105] [SPIRES].ADSCrossRefGoogle Scholar
  62. [62]
    B. Dutta, Y. Mimura and R.N. Mohapatra, Neutrino mixing predictions of a minimal SO(10) model with suppressed proton decay, Phys. Rev. D 72 (2005) 075009 [hep-ph/0507319] [SPIRES].ADSGoogle Scholar
  63. [63]
    B. Dutta, Y. Mimura and R.N. Mohapatra, Origin of quark-lepton flavor in SO(10) with Type II seesaw, Phys. Rev. D 80 (2009) 095021 [arXiv:0910.1043] [SPIRES].ADSGoogle Scholar
  64. [64]
    B. Dutta, Y. Mimura and R.N. Mohapatra, An SO(10) grand unified theory of flavor, JHEP 05 (2010) 034 [arXiv:0911.2242] [SPIRES];MathSciNetADSCrossRefGoogle Scholar
  65. [65]
    B. Dutta and Y. Mimura, Properties of fermion mixings in intersecting D-brane models, Phys. Lett. B 633 (2006) 761 [hep-ph/0512171] [SPIRES].ADSGoogle Scholar
  66. [66]
    T. Fukuyama and N. Okada, Neutrino oscillation data versus minimal supersymmetric SO(10) model, JHEP 11 (2002) 011 [hep-ph/0205066] [SPIRES].ADSCrossRefGoogle Scholar
  67. [67]
    A.S. Joshipura, B.P. Kodrani and K.M. Patel, Fermion masses and mixings in a μτ symmetric SO(10), Phys. Rev. D 79 (2009) 115017 [arXiv:0903.2161] [SPIRES].ADSGoogle Scholar
  68. [68]
    L. Lavoura, H. Kuhbock and W. Grimus, Charged-fermion masses in SO(10): Analysis with scalars in 10+120, Nucl. Phys. B 754 (2006) 1 [hep-ph/0603259] [SPIRES].ADSCrossRefGoogle Scholar
  69. [69]
    W. Grimus and H. Kuhbock, Fermion masses and mixings in a renormalizable SO(10) × Z 2 GUT, Phys. Lett. B 643 (2006) 182 [hep-ph/0607197] [SPIRES].ADSGoogle Scholar
  70. [70]
    W. Grimus and H. Kuhbock, A renormalizable SO(10) GUT scenario with spontaneous CP-violation, Eur. Phys. J. C 51 (2007) 721 [hep-ph/0612132] [SPIRES].ADSCrossRefGoogle Scholar
  71. [71]
    H. Fusaoka and Y. Koide, Updated estimate of running quark masses, Phys. Rev. D 57 (1998) 3986 [hep-ph/9712201] [SPIRES].ADSGoogle Scholar
  72. [72]
    C.R. Das and M.K. Parida, New formulas and predictions for running fermion masses at higher scales in SM, 2HDM and MSSM, Eur. Phys. J. C 20 (2001) 121 [hep-ph/0010004] [SPIRES].ADSCrossRefGoogle Scholar
  73. [73]
    M. Heinze and M. Malinsky, Flavour structure of supersymmetric SO(10) GUTs with extended matter sector, Phys. Rev. D 83 (2011) 035018 [arXiv:1008.4813] [SPIRES].ADSGoogle Scholar
  74. [74]
    D.M. Pierce, J.A. Bagger, K.T. Matchev and R.-j. Zhang, Precision corrections in the minimal supersymmetric standard model, Nucl. Phys. B 491 (1997) 3 [hep-ph/9606211] [SPIRES].ADSCrossRefGoogle Scholar
  75. [75]
    G. Ross and M. Serna, Unification and fermion mass structure, Phys. Lett. B 664 (2008) 97 [arXiv:0704.1248] [SPIRES].ADSGoogle Scholar
  76. [76]
    T. Blazek, S. Raby and S. Pokorski, Finite supersymmetric threshold corrections to CKM matrix elements in the large tan β regime, Phys. Rev. D 52 (1995) 4151 [hep-ph/9504364] [SPIRES].ADSGoogle Scholar
  77. [77]
    W. Altmannshofer, D. Guadagnoli, S. Raby and D.M. Straub, SUSY GUTs with Yukawa unification: A Go/no-go study using FCNC processes, Phys. Lett. B 668 (2008) 385 [arXiv:0801.4363] [SPIRES].ADSGoogle Scholar
  78. [78]
    K. Tobe and J.D. Wells, Revisiting top-bottom-tau Yukawa unification in supersymmetric grand unified theories, Nucl. Phys. B 663 (2003) 123 [hep-ph/0301015] [SPIRES].ADSCrossRefGoogle Scholar
  79. [79]
    P.H. Chankowski and S. Pokorski, Quantum corrections to neutrino masses and mixing angles, Int. J. Mod. Phys. A 17 (2002) 575 [hep-ph/0110249] [SPIRES].ADSGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Dipartimento di Fisica ‘E. Amaldi’, Università di Roma Tre and INFNSezione di Roma TreRomeItaly
  2. 2.CERN, Department of Physics, Theory DivisionGeneva 23Switzerland

Personalised recommendations