Journal of High Energy Physics

, 2011:106

Two dimensional RG flows and Yang-Mills instantons



We study RG flow solutions in (1,0) six dimensional supergravity coupled to an anti-symmetric tensor and Yang-Mills multiplets corresponding to a semisimple group G. We turn on G instanton gauge fields, with instanton number N, in the conformally flat part of the 6D metric. The solution interpolates between two (4,0) supersymmetric AdS3 × S3 backgrounds with two different values of AdS3 and S3 radii and describes an RG flow in the dual 2D SCFT. For the single instanton case and G = SU(2), there exist a consistent reduction ansatz to three dimensions, and the solution in this case can be interpreted as an uplifted 3D solution. Correspondingly, we present the solution in the framework of N = 4 (SU(2) ⋉ R3)2 three dimensional gauged supergravity. The flows studied here are of v.e.v. type, driven by a vacuum expectation value of a (not exactly) marginal operator of dimension two in the UV. We give an interpretation of the supergravity solution in terms of the D1/D5 system in type I string theory on K3, whose effective field theory is expected to flow to a (4,0) SCFT in the infrared.


Gauge-gravity correspondence AdS-CFT Correspondence Supergravity Models 


  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, Renormalization group flows from holography supersymmetry and a c-theorem, Adv. Theor. Math. Phys. 3 (1999) 363 [hep-th/9904017] [SPIRES].MathSciNetMATHGoogle Scholar
  3. [3]
    A. Khavaev and N.P. Warner, A class of N = 1 supersymmetric RG flows from five-dimensional N = 8 supergravity, Phys. Lett. B 495 (2000) 215 [hep-th/0009159] [SPIRES].MathSciNetADSGoogle Scholar
  4. [4]
    L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, Novel local CFT and exact results on perturbations of N = 4 super Yang-Mills from AdS dynamics, JHEP 12 (1998) 022 [hep-th/9810126] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    M. Berg and H. Samtleben, An exact holographic RG flow between 2d conformal fixed points, JHEP 05 (2002) 006 [hep-th/0112154] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    E. Gava, P. Karndumri and K.S. Narain, AdS 3 vacua and RG flows in three dimensional gauged supergravities, JHEP 04 (2010) 117 [arXiv:1002.3760] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    A. Chatrabhuti and P. Karndumri, Vacua and RG flows in N = 9 three dimensional gauged supergravity, JHEP 10 (2010) 098 [arXiv:1007.5438] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    E. Gava, P. Karndumri and K.S. Narain, 3D gauged supergravity from SU(2) reduction of N = 16D supergravity, JHEP 09 (2010) 028 [arXiv:1006.4997] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    M.J. Duff, H. Lü and C.N. Pope, Heterotic phase transitions and singularities of the gauge dyonic string, Phys. Lett. B 378 (1996) 101 [hep-th/9603037] [SPIRES].ADSGoogle Scholar
  10. [10]
    E. Lima, H. Lü, B.A. Ovrut and C.N. Pope, Instanton moduli and brane creation, Nucl. Phys. B 569 (2000) 247 [hep-th/9903001] [SPIRES].ADSCrossRefGoogle Scholar
  11. [11]
    Y. Oz and D. Youm, The D1 − D5 brane system in type-I string theory, Phys. Lett. B 451 (1999) 336 [hep-th/9901088] [SPIRES].MathSciNetADSGoogle Scholar
  12. [12]
    M.R. Douglas, Gauge Fields and D-branes, J. Geom. Phys. 28 (1998) 255 [hep-th/9604198] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  13. [13]
    E. Witten, σ-models and the ADHM construction of instantons, J. Geom. Phys. 15 (1995) 215 [hep-th/9410052] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  14. [14]
    J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three Dimensional Gravity, Commun. Math. Phys. 104 (1986) 207. MathSciNetADSMATHCrossRefGoogle Scholar
  15. [15]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].MathSciNetMATHGoogle Scholar
  16. [16]
    H. Nishino and E. Sezgin, The Complete N = 2, D = 6 Supergravity With Matter and Yang-Mills Couplings, Nucl. Phys. B 144 (1984) 353. Google Scholar
  17. [17]
    H. Nishino and E. Sezgin, New couplings of six-dimensional supergravity, Nucl. Phys. B 505 (1997) 497 [hep-th/9703075] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    H. Lü, C.N. Pope and E. Sezgin, SU(2) reduction of six-dimensional (1, 0) supergravity, Nucl. Phys. B 668 (2003) 237 [hep-th/0212323] [SPIRES].ADSCrossRefGoogle Scholar
  19. [19]
    R. Jackiw, C. Nohl and C. Rebbi, Conformal properties of pseudoparticle configurations, Phys. Rev. D 15 (1977) 1642 [SPIRES].ADSGoogle Scholar
  20. [20]
    H. Reinhardt and K. Langfeld, Nontrivial SU(N) instantons and exotic skyrmions, Phys. Lett. B 317 (1993) 590 [hep-ph/9308306] [SPIRES].MathSciNetADSGoogle Scholar
  21. [21]
    S. Vandoren and P. van Nieuwenhuizen, Lectures on instantons, arXiv:0802.1862 [SPIRES].
  22. [22]
    J. Polchinski and E. Witten, Evidence for heterotic-type I string duality, Nucl. Phys. B 460 (1996) 525 [hep-th/9510169] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    M.J. Duff, R. Minasian and Edward Witten, Evidence for heterotic/heterotic duality, Nucl. Phys. B 465 (1996) 413 [hep-th/9601036] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of spacetime and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [SPIRES].ADSMATHCrossRefGoogle Scholar
  25. [25]
    P.M. Petropoulos, N. Prezas and K. Sfetsos, Supersymmetric deformations of F1-NS5-branes and their exact CFT description, JHEP 09 (2009) 085 [arXiv:0905.1623] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    B. de Wit, I. Herger and H. Samtleben, Gauged locally supersymmetric D = 3 nonlinear σ-models, Nucl. Phys. B 671 (2003) 175 [hep-th/0307006] [SPIRES].ADSGoogle Scholar
  28. [28]
    H. Nicolai and H. Samtleben, Compact and noncompact gauged maximal supergravities in three dimensions, JHEP 04 (2001) 022 [hep-th/0103032] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    T. Fischbacher, H. Nicolai and H. Samtleben, Non-semisimple and complex gaugings of N = 16 supergravity, Commun. Math. Phys. 249 (2004) 475 [hep-th/0306276] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  30. [30]
    J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string, Cambridge University Press, Cambridge U.K. (2005).Google Scholar
  31. [31]
    M. Bañados and R. Caro, Holographic Ward identities: Examples from 2 + 1 gravity, JHEP 12 (2004) 036 [hep-th/0411060] [SPIRES].ADSCrossRefGoogle Scholar
  32. [32]
    P. Kraus and F. Larsen, Holographic gravitational anomalies, JHEP 01 (2006) 022 [hep-th/0508218] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    P. Kraus and F. Larsen, Partition functions and elliptic genera from supergravity, JHEP 01 (2007) 002, [hep-th/0607138] [SPIRES].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.INFN, Sezione di TriesteTriesteItaly
  2. 2.International School for Advanced Studies (SISSA)TriesteItaly
  3. 3.The Abdus Salam International Centre for Theoretical PhysicsTriesteItaly

Personalised recommendations