Lepton flavor violation in the Simplest Little Higgs model

  • Francisco del Águila
  • José I. Illana
  • Mark D. Jenkins


The flavor sector of Little Higgs models based on product groups, notably the Littlest Higgs with T parity (LHT), has been extensively studied and some amount of fine tuning was found to be required to meet the experimental constraints. However, no such attention has been paid to other classes of models. Here we analyze the phenomenology of flavor mixing in the lepton sector of a simple group model, the Simplest Little Higgs (SLH). We obtain the Feynman rules of the SLH in the ’t Hooft-Feynman gauge up to the necessary order and calculate the leading contributions to the rare processes μ → eγ, \( \mu \to {\text{ee}\bar{\rm e}} \) and μ − e conversion in nuclei. We find results comparable to those of the LHT model, because in both cases they arise at the one-loop level. These require the flavor alignment of the Yukawa couplings of light and heavy leptons at the per cent level or an effective scale of around 10 TeV.


Higgs Physics Rare Decays Beyond Standard Model 


  1. [1]
    N. Arkani-Hamed, A.G. Cohen and H. Georgi, (De)constructing dimensions, Phys. Rev. Lett. 86 (2001) 4757 [hep-th/0104005] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    N. Arkani-Hamed, A.G. Cohen and H. Georgi, Electroweak symmetry breaking from dimensional deconstruction, Phys. Lett. B 513 (2001) 232 [hep-ph/0105239] [SPIRES].MathSciNetADSGoogle Scholar
  3. [3]
    M. Schmaltz and D. Tucker-Smith, Little Higgs review, Ann. Rev. Nucl. Part. Sci. 55 (2005) 229 [hep-ph/0502182] [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    M. Perelstein, Little Higgs models and their phenomenology, Prog. Part. Nucl. Phys. 58 (2007) 247 [hep-ph/0512128] [SPIRES].ADSCrossRefGoogle Scholar
  5. [5]
    T. Han, H.E. Logan and L.-T. Wang, Smoking-gun signatures of Little Higgs models, JHEP 01 (2006) 099 [hep-ph/0506313] [SPIRES].ADSCrossRefGoogle Scholar
  6. [6]
    C. Csáki, J. Hubisz, G.D. Kribs, P. Meade and J. Terning, Big corrections from a Little Higgs, Phys. Rev. D 67 (2003) 115002 [hep-ph/0211124] [SPIRES].ADSGoogle Scholar
  7. [7]
    C. Csáki, J. Hubisz, G.D. Kribs, P. Meade and J. Terning, Variations of Little Higgs models and their electroweak constraints, Phys. Rev. D 68 (2003) 035009 [hep-ph/0303236] [SPIRES].ADSGoogle Scholar
  8. [8]
    Z. Han and W. Skiba, Little Higgs models and electroweak measurements, Phys. Rev. D 72 (2005) 035005 [hep-ph/0506206] [SPIRES].ADSGoogle Scholar
  9. [9]
    M.-C. Chen, Models of Little Higgs and electroweak precision tests, Mod. Phys. Lett. A 21 (2006) 621 [hep-ph/0601126] [SPIRES].ADSGoogle Scholar
  10. [10]
    H.-C. Cheng and I. Low, TeV symmetry and the little hierarchy problem, JHEP 09 (2003) 051 [hep-ph/0308199] [SPIRES].ADSCrossRefGoogle Scholar
  11. [11]
    I. Low, T parity and the Littlest Higgs, JHEP 10 (2004) 067 [hep-ph/0409025] [SPIRES].ADSCrossRefGoogle Scholar
  12. [12]
    H.-C. Cheng and I. Low, Little hierarchy, little Higgses and a little symmetry, JHEP 08 (2004) 061 [hep-ph/0405243] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    J. Hubisz, P. Meade, A. Noble and M. Perelstein, Electroweak precision constraints on the Littlest Higgs model with T parity, JHEP 01 (2006) 135 [hep-ph/0506042] [SPIRES].ADSCrossRefGoogle Scholar
  14. [14]
    T. Han, H.E. Logan, B. McElrath and L.-T. Wang, Phenomenology of the Little Higgs model, Phys. Rev. D 67 (2003) 095004 [hep-ph/0301040] [SPIRES].ADSGoogle Scholar
  15. [15]
    A.J. Buras, Flavour theory: 2009, PoS(EPS-HEP 2009)024 [arXiv:0910.1032] [SPIRES].
  16. [16]
    S.R. Choudhury, A.S. Cornell, A. Deandrea, N. Gaur and A. Goyal, Lepton Flavour Violation in the Little Higgs model, Phys. Rev. D 75 (2007) 055011 [hep-ph/0612327] [SPIRES].ADSGoogle Scholar
  17. [17]
    M. Blanke, A.J. Buras, B. Duling, A. Poschenrieder and C. Tarantino, Charged Lepton Flavour Violation and (g − 2)μ in the Littlest Higgs model with T-parity: a clear distinction from supersymmetry, JHEP 05 (2007) 013 [hep-ph/0702136] [SPIRES].ADSCrossRefGoogle Scholar
  18. [18]
    F. del Águila, J.I. Illana and M.D. Jenkins, Precise limits from lepton flavour violating processes on the Littlest Higgs model with T-parity, JHEP 01 (2009) 080 [arXiv:0811.2891] [SPIRES].CrossRefGoogle Scholar
  19. [19]
    F. del Águila, J.I. Illana and M.D. Jenkins, Muon to electron conversion in the Littlest Higgs model with T-parity, JHEP 09 (2010) 040 [arXiv:1006.5914] [SPIRES].CrossRefGoogle Scholar
  20. [20]
    M. Blanke et al., Rare and CP-violating K and B decays in the Littlest Higgs model with T parity, JHEP 01 (2007) 066 [hep-ph/0610298] [SPIRES].ADSCrossRefGoogle Scholar
  21. [21]
    T. Goto, Y. Okada and Y. Yamamoto, Ultraviolet divergences of flavor changing amplitudes in the Littlest Higgs model with T-parity, Phys. Lett. B 670 (2009) 378 [arXiv:0809.4753] [SPIRES].ADSGoogle Scholar
  22. [22]
    T. Goto, Y. Okada and Y. Yamamoto, Tau and muon lepton flavor violations in the Littlest Higgs model with T-parity, arXiv:1012.4385 [SPIRES].
  23. [23]
    M. Blanke, A.J. Buras, B. Duling, S. Recksiegel and C. Tarantino, FCNC processes in the Littlest Higgs model with T-parity: a 2009 look, Acta Phys. Polon. B 41 (2010) 657 [arXiv:0906.5454] [SPIRES].Google Scholar
  24. [24]
    A.J. Buras, A. Poschenrieder, S. Uhlig and W.A. Bardeen, Rare K and B decays in the Littlest Higgs model without T parity, JHEP 11 (2006) 062 [hep-ph/0607189] [SPIRES].ADSCrossRefGoogle Scholar
  25. [25]
    D.E. Kaplan and M. Schmaltz, The Little Higgs from a simple group, JHEP 10 (2003) 039 [hep-ph/0302049] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    M. Schmaltz, The simplest Little Higgs, JHEP 08 (2004) 056 [hep-ph/0407143] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    F. del Águila, M. Masip and J.L. Padilla, A Little Higgs model of neutrino masses, Phys. Lett. B 627 (2005) 131 [hep-ph/0506063] [SPIRES].ADSGoogle Scholar
  28. [28]
    F. del Aguila, J.A. Águilar-Saavedra, J. de Blas and M. Zralek, Looking for signals beyond the neutrino Standard Model, Acta Phys. Polon. B 38 (2007) 3339 [arXiv:0710.2923] [SPIRES].ADSGoogle Scholar
  29. [29]
    F. del Águila and J.A. Aguilar-Saavedra, Electroweak scale seesaw and heavy Dirac neutrino signals at LHC, Phys. Lett. B 672 (2009) 158 [arXiv:0809.2096] [SPIRES].ADSGoogle Scholar
  30. [30]
    F. del Águila, J.A. Aguilar-Saavedra and J. de Blas, Trilepton signals: the golden channel for seesaw searches at LHC, Acta Phys. Polon. B 40 (2009) 2901 [arXiv:0910.2720] [SPIRES].ADSGoogle Scholar
  31. [31]
    S. Dimopoulos and J.R. Ellis, Challenges for extended technicolor theories, Nucl. Phys. B 182 (1982) 505 [SPIRES].ADSGoogle Scholar
  32. [32]
    T. Mori, MEG: the experiment to search for μ, Nucl. Phys. Proc. Suppl. 169 (2007) 166 [SPIRES].ADSCrossRefGoogle Scholar
  33. [33]
    MEG collaboration, J. Adam et al., A limit for the μeγ decay from the MEG experiment, Nucl. Phys. B 834 (2010) 1 [arXiv:0908.2594] [SPIRES].ADSCrossRefGoogle Scholar
  34. [34]
    Y. Kuno, PRISM/PRIME, Nucl. Phys. Proc. Suppl. 149 (2005) 376 [SPIRES].ADSCrossRefGoogle Scholar
  35. [35]
    J. Pasternak et al., Accelerator and particle physics research for the next generation muon to electron conversion experiment — the PRISM task force, in the proceedings of 1st International Particle Accelerator Conference: IPAC'10, Kyoto Japan May 23–28 May 2010 [SPIRES].
  36. [36]
    W. Altmannshofer, A.J. Buras, S. Gori, P. Paradisi and D.M. Straub, Anatomy and phenomenology of FCNC and CPV effects in SUSY theories, Nucl. Phys. B 830 (2010) 17 [arXiv:0909.1333] [SPIRES].ADSCrossRefGoogle Scholar
  37. [37]
    A.J. Buras, Minimal Flavour Violation and beyond: towards a flavour code for short distance dynamics, Acta Phys. Polon. B 41 (2010) 2487 [arXiv:1012.1447] [SPIRES].Google Scholar
  38. [38]
    A.J. Buras, B. Duling, T. Feldmann, T. Heidsieck and C. Promberger, Lepton Flavour Violation in the presence of a fourth generation of quarks and leptons, JHEP 09 (2010) 104 [arXiv:1006.5356] [SPIRES].ADSCrossRefGoogle Scholar
  39. [39]
    O.C.W. Kong, A completed chiral fermionic sector model with Little Higgs, hep-ph/0307250 [SPIRES].
  40. [40]
    O.C.W. Kong, Flavor and Little Higgs, J. Korean Phys. Soc. 45 (2004) S404 [hep-ph/0312060] [SPIRES].Google Scholar
  41. [41]
    F. del Águila, J. de Blas and M. Pérez-Victoria, Effects of new leptons in electroweak precision data, Phys. Rev. D 78 (2008) 013010 [arXiv:0803.4008] [SPIRES].ADSGoogle Scholar
  42. [42]
    J. Hisano, T. Moroi, K. Tobe and M. Yamaguchi, Lepton-Flavor Violation via right-handed neutrino Yukawa couplings in supersymmetric Standard Model, Phys. Rev. D 53 (1996) 2442 [hep-ph/9510309] [SPIRES].ADSGoogle Scholar
  43. [43]
    E. Arganda and M.J. Herrero, Testing supersymmetry with lepton flavor violating τ and μ decays, Phys. Rev. D 73 (2006) 055003 [hep-ph/0510405] [SPIRES].ADSGoogle Scholar
  44. [44]
    R. Kitano, M. Koike and Y. Okada, Detailed calculation of Lepton Flavor Violating muon electron conversion rate for various nuclei, Phys. Rev. D 66 (2002) 096002 [Erratum ibid. D 76 (2007) 059902] [hep-ph/0203110] [SPIRES].ADSGoogle Scholar
  45. [45]
    C.C. Nishi, Simple derivation of general Fierz-like identities, Am. J. Phys. 73 (2005) 1160 [hep-ph/0412245] [SPIRES].ADSCrossRefGoogle Scholar
  46. [46]
    MEGA collaboration, M.L. Brooks et al., New limit for the family-number non-conserving decay μ +e + γ, Phys. Rev. Lett. 83 (1999) 1521 [hep-ex/9905013] [SPIRES].ADSCrossRefGoogle Scholar
  47. [47]
    SINDRUM collaboration, U. Bellgardt et al., Search for the decay μ +e + e + e , Nucl. Phys. B 299 (1988) 1 [SPIRES].ADSCrossRefGoogle Scholar
  48. [48]
    SINDRUM II collaboration, W.H. Bertl et al., A search for μe conversion in muonic gold, Eur. Phys. J. C 47 (2006) 337 [SPIRES].ADSCrossRefGoogle Scholar
  49. [49]
    SINDRUM II. collaboration, C. Dohmen et al., Test of lepton flavor conservation in μe conversion on titanium, Phys. Lett. B 317 (1993) 631 [SPIRES].ADSGoogle Scholar
  50. [50]
    R. Barcelo, M. Masip and M. Moreno-Torres, Little Higgs models with a light T quark, Nucl. Phys. B 782 (2007) 159 [hep-ph/0701040] [SPIRES].ADSCrossRefGoogle Scholar
  51. [51]
    R. Barcelo and M. Masip, A minimal Little Higgs model, Phys. Rev. D 78 (2008) 095012 [arXiv:0809.3124] [SPIRES].ADSGoogle Scholar
  52. [52]
    W. Altmannshofer et al., Symmetries and asymmetries of BK * μ + μ decays in the Standard Model and beyond, JHEP 01 (2009) 019 [arXiv:0811.1214] [SPIRES].ADSCrossRefGoogle Scholar
  53. [53]
    LHCb collaboration, A.A. Alves et al., The LHCb detector at the LHC, 2008 JINST 3 S08005 [SPIRES].CrossRefGoogle Scholar
  54. [54]
    N. Tuning, Search for new physics with rare heavy flavour decays at LHCb, LHCb-TALK-2010-142, Cern, Geneva Switzerland (2010).Google Scholar
  55. [55]
    CDF collaboration, T. Aaltonen et al., Search for B s 0μ + μ and B d 0μ + μ decays with 2fb−1 of \( p\bar{p} \) collisions, Phys. Rev. Lett. 100 (2008) 101802 [arXiv:0712.1708] [SPIRES].ADSCrossRefGoogle Scholar
  56. [56]
    D0 collaboration, V.M. Abazov et al., Search for the rare decay B s 0μ + μ , Phys. Lett. B 693 (2010) 539 [arXiv:1006.3469] [SPIRES].ADSGoogle Scholar
  57. [57]
    BABAR collaboration, B. Aubert et al., Direct CP, lepton flavor and isospin asymmetries in the decays BK (*) + , Phys. Rev. Lett. 102 (2009) 091803 [arXiv:0807.4119] [SPIRES].ADSCrossRefGoogle Scholar
  58. [58]
    BELLE collaboration, J.T. Wei et al., Measurement of the differential branching fraction and forward-backword asymmetry for BK (*) + , Phys. Rev. Lett. 103 (2009) 171801 [arXiv:0904.0770] [SPIRES].ADSCrossRefGoogle Scholar
  59. [59]
    CDF collaboration, T. Aaltonen et al., Search for the rare decays B +μ + μ K + , B 0μ + μ K *0(892) and B s 0μ + μ ϕ at CDF, Phys. Rev. D 79 (2009) 011104 [arXiv:0804.3908] [SPIRES].ADSGoogle Scholar
  60. [60]
    CDF collaboration, T. Aaltonen et al., Measurement of forward-backward asymmetry in BK (*) μ + μ and first observation of B s 0ϕμ + μ , CDF note 10047, Fermilab, Batavia U.S.A. (2010).Google Scholar
  61. [61]
    F. del Águila and M.J. Bowick, The possibility of new fermions with I = 0 mass, Nucl. Phys. B 224 (1983) 107 [SPIRES].ADSCrossRefGoogle Scholar
  62. [62]
    F. del Águila, M. Pérez-Victoria and J. Santiago, Observable contributions of new exotic quarks to quark mixing, JHEP 09 (2000) 011 [hep-ph/0007316] [SPIRES].CrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Francisco del Águila
    • 1
  • José I. Illana
    • 1
  • Mark D. Jenkins
    • 1
  1. 1.CAFPE and Departamento de Física Teórica y del CosmosUniversidad de GranadaGranadaSpain

Personalised recommendations