Advertisement

Relic densities including Sommerfeld enhancements in the MSSM

  • Andrzej HryczukEmail author
  • Roberto Iengo
  • Piero Ullio
Article

Abstract

We have developed a general formalism to compute Sommerfeld enhancement (SE) factors for a multi-state system of fermions, in all possible spin configurations and with generic long-range interactions. We show how to include such SE effects in an accurate calculation of the thermal relic density for WIMP dark matter candidates. We apply the method to the MSSM and perform a numerical study of the relic abundance of neutralinos with arbitrary composition and including the SE due to the exchange of the W and Z bosons, photons and Higgses. We find that the relic density can be suppressed by a factor of a few in a sizable region of the parameter space, mostly for Wino-like neutralino with mass of a few TeV, and up to an order of magnitude close to a resonance.

Keywords

Cosmology of Theories beyond the SM Supersymmetric Standard Model Nonperturbative Effects 

References

  1. [1]
    N. Jarosik et al., Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: sky maps, systematic errors and basic results, Astrophys. J. Suppl. 192 (2011) 14 [arXiv:1001.4744] [SPIRES].ADSCrossRefGoogle Scholar
  2. [2]
    SDSS collaboration, B.A. Reid et al., Baryon acoustic oscillations in the sloan digital sky survey data release 7 galaxy sample, Mon. Not. Roy. Astron. Soc. 401 (2010) 2148 [arXiv:0907.1660] [SPIRES].CrossRefGoogle Scholar
  3. [3]
    A.G. Riess et al., A redetermination of the Hubble constant with the Hubble space telescope from a differential distance ladder, Astrophys. J. 699 (2009) 539 [arXiv:0905.0695] [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [SPIRES].ADSCrossRefGoogle Scholar
  5. [5]
    G. Bertone, Particle dark matter, Cambridge University Press, Cambridge U.K. (2010).zbMATHCrossRefGoogle Scholar
  6. [6]
    PAMELA collaboration, O. Adriani et al., An anomalous positron abundance in cosmic rays with energies 1.5-100 GeV, Nature 458 (2009) 607 [arXiv:0810.4995] [SPIRES].ADSCrossRefGoogle Scholar
  7. [7]
    N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A theory of dark matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [SPIRES].ADSGoogle Scholar
  8. [8]
    A. Sommerfeld, Über die Beugung und Bremsung der Elektronen, Annalen der Physik 403 (1931) 257.ADSCrossRefGoogle Scholar
  9. [9]
    J. Hisano, S. Matsumoto and M.M. Nojiri, Unitarity and higher-order corrections in neutralino dark matter annihilation into two photons, Phys. Rev. D 67 (2003) 075014 [hep-ph/0212022] [SPIRES].ADSGoogle Scholar
  10. [10]
    J. Hisano, S. Matsumoto, M.M. Nojiri and O. Saito, Non-perturbative effect on dark matter annihilation and gamma ray signature from galactic center, Phys. Rev. D 71 (2005) 063528 [hep-ph/0412403] [SPIRES].ADSGoogle Scholar
  11. [11]
    J. Hisano, S. Matsumoto, M. Nagai, O. Saito and M. Senami, Non-perturbative effect on thermal relic abundance of dark matter, Phys. Lett. B 646 (2007) 34 [hep-ph/0610249] [SPIRES].ADSGoogle Scholar
  12. [12]
    M. Cirelli, A. Strumia and M. Tamburini, Cosmology and astrophysics of minimal dark matter, Nucl. Phys. B 787 (2007) 152 [arXiv:0706.4071] [SPIRES].ADSCrossRefGoogle Scholar
  13. [13]
    M. Cirelli and A. Strumia, Minimal dark matter predictions and the PAMELA positron excess, PoS IDM2008 (2008) 089[arXiv:0808.3867] [SPIRES].
  14. [14]
    J.B. Dent, S. Dutta and R.J. Scherrer, Thermal relic abundances of particles with velocity-dependent interactions, Phys. Lett. B 687 (2010) 275 [arXiv:0909.4128] [SPIRES].ADSGoogle Scholar
  15. [15]
    J. Zavala, M. Vogelsberger and S.D.M. White, Relic density and CMB constraints on dark matter annihilation with Sommerfeld enhancement, Phys. Rev. D 81 (2010) 083502 [arXiv:0910.5221] [SPIRES].ADSGoogle Scholar
  16. [16]
    T.R. Slatyer, The Sommerfeld enhancement for dark matter with an excited state, JCAP 02 (2010) 028 [arXiv:0910.5713] [SPIRES].ADSGoogle Scholar
  17. [17]
    M. Lattanzi and J.I. Silk, Can the W IMP annihilation boost factor be boosted by the Sommerfeld enhancement?, Phys. Rev. D 79 (2009) 083523 [arXiv:0812.0360] [SPIRES].ADSGoogle Scholar
  18. [18]
    S. Hannestad and T. Tram, Sommerfeld enhancement of DM annihilation: resonance structure, freeze-out and CMB spectral bound, JCAP 01 (2011) 016 [arXiv:1008.1511] [SPIRES].ADSGoogle Scholar
  19. [19]
    J.L. Feng, M. Kaplinghat and H.-B. Yu, Sommerfeld enhancements for thermal relic dark matter, Phys. Rev. D 82 (2010) 083525 [arXiv:1005.4678] [SPIRES].ADSGoogle Scholar
  20. [20]
    H. Iminniyaz and M. Kakizaki, Thermal abundance of non-relativistic relics with Sommerfeld enhancement, arXiv:1008.2905 [SPIRES].
  21. [21]
    S. Mohanty, S. Rao and D.P. Roy, Reconciling heavy wino dark matter model with the relic density and PAMELA data using Sommerfeld effect, arXiv:1009.5058 [SPIRES].
  22. [22]
    C. Arina, F.-X. Josse-Michaux and N. Sahu, Constraining Sommerfeld enhanced annihilation cross-sections of dark matter via direct searches, Phys. Lett. B 691 (2010) 219 [arXiv:1004.0645] [SPIRES].ADSGoogle Scholar
  23. [23]
    M.R. Buckley and P.J. Fox, Dark matter self-interactions and light force carriers, Phys. Rev. D 81 (2010) 083522 [arXiv:0911.3898] [SPIRES].ADSGoogle Scholar
  24. [24]
    J.L. Feng, M. Kaplinghat and H.-B. Yu, Halo shape and relic density exclusions of Sommerfeld-enhanced dark matter explanations of cosmic ray excesses, Phys. Rev. Lett. 104 (2010) 151301 [arXiv:0911.0422] [SPIRES].ADSCrossRefGoogle Scholar
  25. [25]
    J. March-Russell, S.M. West, D. Cumberbatch and D. Hooper, Heavy dark matter through the Higgs portal, JHEP 07 (2008) 058 [arXiv:0801.3440] [SPIRES].ADSCrossRefGoogle Scholar
  26. [26]
    R. Iengo, Sommerfeld enhancement: general results from field theory diagrams, JHEP 05 (2009) 024 [arXiv:0902.0688] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    S. Cassel, Sommerfeld factor for arbitrary partial wave processes, J. Phys. G 37 (2010) 105009 [arXiv:0903.5307] [SPIRES].ADSGoogle Scholar
  28. [28]
    L. Visinelli and P. Gondolo, An integral equation for distorted wave amplitudes, arXiv:1007.2903 [SPIRES].
  29. [29]
    P. Gondolo et al., DarkSUSY: Computing supersymmetric dark matter properties numerically, JCAP 07 (2004) 008 [astro-ph/0406204] [SPIRES].ADSGoogle Scholar
  30. [30]
    P. Binetruy, G. Girardi and P. Salati, Constraints on a system of two neutral fermions from cosmology, Nucl. Phys. B 237 (1984) 285 [SPIRES].ADSCrossRefGoogle Scholar
  31. [31]
    K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [SPIRES].ADSGoogle Scholar
  32. [32]
    J. Edsjo and P. Gondolo, Neutralino relic density including coannihilations, Phys. Rev. D 56 (1997) 1879 [hep-ph/9704361] [SPIRES].ADSGoogle Scholar
  33. [33]
    N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [SPIRES].ADSCrossRefGoogle Scholar
  34. [34]
    G.F. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [hep-ph/0406088] [SPIRES].ADSCrossRefGoogle Scholar
  35. [35]
    N. Arkani-Hamed, S. Dimopoulos, G.F. Giudice and A. Romanino, A spects of split supersymmetry, Nucl. Phys. B 709 (2005) 3 [hep-ph/0409232] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    I. Antoniadis and S. Dimopoulos, Splitting supersymmetry in string theory, Nucl. Phys. B 715 (2005) 120 [hep-th/0411032] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    B. Körs and P. Nath, Hierarchically split supersymmetry with Fayet-Iliopoulos D-terms in string theory, Nucl. Phys. B 711 (2005) 112 [hep-th/0411201] [SPIRES].ADSGoogle Scholar
  38. [38]
    A. Hryczuk, The Sommerfeld enhancement for scalar particles and application to sfermion co-annihilation regions, [arXiv:1102.4295].
  39. [39]
    D. Pierce and A. Papadopoulos, The Complete radiative corrections to the gaugino and Higgsino masses in the minimal supersymmetric model, Nucl. Phys. B 430 (1994) 278 [hep-ph/9403240] [SPIRES].ADSCrossRefGoogle Scholar
  40. [40]
    H.-C. Cheng, B.A. Dobrescu and K.T. Matchev, Generic and chiral extensions of the supersymmetric standard model, Nucl. Phys. B 543 (1999) 47 [hep-ph/9811316] [SPIRES].ADSCrossRefGoogle Scholar
  41. [41]
    M. Dine, R.G. Leigh, P.Y. Huet, A.D. Linde and D.A. Linde, Towards the theory of the electroweak phase transition, Phys. Rev. D 46 (1992) 550 [hep-ph/9203203] [SPIRES].ADSGoogle Scholar
  42. [42]
    D.J. Gross, R.D. Pisarski and L.G. Yaffe, QCD and instantons at finite temperature, Rev. Mod. Phys. 53 (1981) 43 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    H.A. Weldon, Effective fermion masses of order gT in High temperature gauge theories with exact chiral invariance, Phys. Rev. D 26 (1982) 2789 [SPIRES].ADSGoogle Scholar
  44. [44]
    W.H. Press, B. Flannery, A. Teukolsky, W. Vetterling, Numerical recipes in FORTRAN 77: the art of scientific computing, Cambridge University Press, Cambridge U.K. (1992).Google Scholar
  45. [45]
    M. Drees, J.M. Kim and K.I. Nagao, Potentially large one-loop corrections to WIMP annihilation, Phys. Rev. D 81 (2010) 105004 [arXiv:0911.3795] [SPIRES].ADSGoogle Scholar
  46. [46]
    T. Bringmann and S. Hofmann, Thermal decoupling of WIMPs from first principles, JCAP 07 (2007) 016 [hep-ph/0612238] [SPIRES].Google Scholar
  47. [47]
    T. Bringmann, Particle models and the small-scale structure of dark matter, New J. Phys. 11 (2009) 105027 [arXiv:0903.0189] [SPIRES].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.SISSA and INFN, Sezione di TriesteTriesteItaly

Personalised recommendations