Toric CFTs, permutation triples, and Belyi pairs

  • Vishnu Jejjala
  • Sanjaye Ramgoolam
  • Diego Rodriguez-Gomez
Article

Abstract

Four-dimensional CFTs dual to branes transverse to toric Calabi-Yau threefolds have been described by bipartite graphs on a torus (dimer models). We use the theory of dessins d’enfants to describe these in terms of triples of permutations which multiply to one. These permutations yield an elegant description of zig-zag paths, which have appeared in characterizing the toroidal dimers that lead to consistent SCFTs. The dessins are also related to Belyi pairs, consisting of a curve equipped with a map to \( {\mathbb{P}^1} \), branched over three points on the \( {\mathbb{P}^1} \). We construct explicit examples of Belyi pairs associated to some CFTs, including \( {\mathbb{C}^3} \) and the conifold. Permutation symmetries of the superpotential are related to the geometry of the Belyi pair. The Artin braid group action and a variation thereof play an interesting role. We make a conjecture relating the complex structure of the Belyi curve to R-charges in the conformal field theory.

Keywords

Supersymmetric gauge theory Supersymmetry and Duality D-branes 

References

  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].MathSciNetADSGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].MathSciNetMATHGoogle Scholar
  4. [4]
    I.R. Klebanov and E. Witten, Superconformal field theory on threebranes at a Calabi-Yau singularity, Nucl. Phys. B 536 (1998) 199 [hep-th/9807080] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    S. Benvenuti, S. Franco, A. Hanany, D. Martelli and J. Sparks, An infinite family of superconformal quiver gauge theories with Sasaki-Einstein duals, JHEP 06 (2005) 064 [hep-th/0411264] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    S. Benvenuti and M. Kruczenski, From Sasaki-Einstein spaces to quivers via BPS geodesics: L p,q|r, JHEP 04 (2006) 033 [hep-th/0505206] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    A. Butti, D. Forcella and A. Zaffaroni, The dual superconformal theory for L p,q|r manifolds, JHEP 09 (2005) 018 [hep-th/0505220] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    S. Franco et al., Gauge theories from toric geometry and brane tilings, JHEP 01 (2006) 128 [hep-th/0505211] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    A. Hanany and K.D. Kennaway, Dimer models and toric diagrams, hep-th/0503149 [SPIRES].
  10. [10]
    S. Franco, A. Hanany, K.D. Kennaway, D. Vegh and B. Wecht, Brane Dimers and Quiver Gauge Theories, JHEP 01 (2006) 096 [hep-th/0504110] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    A. Hanany and D. Vegh, Quivers, tilings, branes and rhombi, JHEP 10 (2007) 029 [hep-th/0511063] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    S. Franco and D. Vegh, Moduli spaces of gauge theories from dimer models: Proof of the correspondence, JHEP 11 (2006) 054 [hep-th/0601063] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    B. Feng, Y.-H. He, K.D. Kennaway and C. Vafa, Dimer models from mirror symmetry and quivering amoebae, Adv. Theor. Math. Phys. 12 (2008) 3 [hep-th/0511287] [SPIRES].MathSciNetGoogle Scholar
  14. [14]
    K.D. Kennaway, Brane Tilings, Int. J. Mod. Phys. A 22 (2007) 2977 [arXiv:0706.1660] [SPIRES].MathSciNetADSGoogle Scholar
  15. [15]
    M. Yamazaki, Brane Tilings and Their Applications, Fortsch. Phys. 56 (2008) 555 [arXiv:0803.4474] [SPIRES].MATHCrossRefADSGoogle Scholar
  16. [16]
    R. Kenyon, An introduction to the dimer model, math/0310326.Google Scholar
  17. [17]
    J. Stienstra, Hypergeometric Systems in two Variables, Quivers, Dimers and Dessins d’Enfants, arXiv:0711.0464 [SPIRES].
  18. [18]
    S.K. Ashok, F. Cachazo and E. Dell’Aquila, Strebel differentials with integral lengths and Argyres-Douglas singularities, hep-th/0610080 [SPIRES].
  19. [19]
    S.K. Ashok, F. Cachazo and E. Dell’Aquila, Children’s drawings from Seiberg-Witten curves, hep-th/0611082 [SPIRES].
  20. [20]
    M. Bauer and C. Itzykson, Triangulations, in [21].Google Scholar
  21. [21]
    L. Schneps, The Grothendieck theory of dessins d’enfants, LMS Lecture Notes Series 200, Cambridge University Press, Cambridge U.K. (1994).MATHCrossRefGoogle Scholar
  22. [22]
    E. Looijenga, Intersection theory on Deligne-Mumford compactifications, Seminaire Bourbaki, exp. no. 768, (1992), pg. 187.Google Scholar
  23. [23]
    R.d.M. Koch and S. Ramgoolam, From Matrix Models and quantum fields to Hurwitz space and the absolute Galois group, arXiv:1002.1634 [SPIRES].
  24. [24]
    A. Grothendieck, Esquisse d’un programme, in [21].Google Scholar
  25. [25]
    G.V. Belyi, On Galois extensions of a maximal cyclotomic field, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979) 267.MathSciNetMATHGoogle Scholar
  26. [26]
    R. Kenyon and J.-M. Schlenker, Rhombic embeddings of planar graphs with faces of degree 4, math-ph/0305057.
  27. [27]
    K.A. Intriligator and B. Wecht, The exact superconformal R-symmetry maximizes a, Nucl. Phys. B 667 (2003) 183 [hep-th/0304128] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    S. Cordes, G.W. Moore and S. Ramgoolam, Large-N 2 – D Yang-Mills theory and topological string theory, Commun. Math. Phys. 185 (1997) 543 [hep-th/9402107] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  29. [29]
    S. Lando and A. Zvonkin, Graphs on surfaces and their applications, Encyclopaedia of Mathematical Sciences. Volume 141, Springer, New York U.S.A. (2004).MATHGoogle Scholar
  30. [30]
    P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley, New York U.S.A (1978).MATHGoogle Scholar
  31. [31]
    L. Khadjavi and V. Scharashkin, Belyi maps and elliptic curves, http://myweb.lmu.edu/lkhadjavi/.
  32. [32]
    G.A. Jones and M. Streit, Monodromy groups and cartographic groups, in [33].Google Scholar
  33. [33]
    L. Schneps and P. Lochak, Geometric Galois actions, the inverse Galois problem, moduli spaces and mapping class groups, LMS Lecture Note Series 243, Cambridge University Press, Cambridge U.K. (1997).CrossRefGoogle Scholar
  34. [34]
  35. [35]
    D.R. Morrison and M.R. Plesser, Non-spherical horizons. I, Adv. Theor. Math. Phys. 3 (1999) 1 [hep-th/9810201] [SPIRES].MathSciNetMATHGoogle Scholar
  36. [36]
    A.M. Uranga, Brane Configurations for Branes at Conifolds, JHEP 01 (1999) 022 [hep-th/9811004] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    M.R. Douglas and G.W. Moore, D-branes, Quivers and ALE Instantons, hep-th/9603167 [SPIRES].
  38. [38]
    A. Hanany, D. Orlando and S. Reffert, Sublattice Counting and Orbifolds, JHEP 06 (2010) 051 [arXiv:1002.2981] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    J. Davey, A. Hanany and R.-K. Seong, Counting Orbifolds, JHEP 06 (2010) 010 [arXiv:1002.3609] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    A. Hanany and R.-K. Seong, Symmetries of Abelian Orbifolds, JHEP 01 (2011) 027 [arXiv:1009.3017] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    D.J. Gross and W. Taylor, Twists and Wilson loops in the string theory of two-dimensional QCD, Nucl. Phys. B 403 (1993) 395 [hep-th/9303046] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    I. Garcia-Etxebarria, F. Saad and A.M. Uranga, Quiver gauge theories at resolved and deformed singularities using dimers, JHEP 06 (2006) 055 [hep-th/0603108] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    S. Franco et al., Dimers and Orientifolds, JHEP 09 (2007) 075 [arXiv:0707.0298] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    P. Joubert, Geometric actions of the absolute Galois group, MSc. Thesis, University of Stellenbosch (2006).Google Scholar
  45. [45]
    O. Aharony, A. Hanany and B. Kol, Webs of (p,q) 5-branes, five dimensional field theories and grid diagrams, JHEP 01 (1998) 002 [hep-th/9710116] [SPIRES].ADSCrossRefGoogle Scholar
  46. [46]
    K. Hori, A. Iqbal and C. Vafa, D-branes and mirror symmetry, hep-th/0005247 [SPIRES].
  47. [47]
    B. Mazur, Algebraic numbers, in [48].Google Scholar
  48. [48]
    T. Gowers, Princeton companion to mathematics, Princeton University Press, Princeton U.S.A. (2008).MATHGoogle Scholar
  49. [49]
    S. Lang, Introduction to transcendental numbers, Chapter 2.1, Addison-Wesley, Reading U.S.A. (1966).Google Scholar
  50. [50]
    K. Ramachandra, Contributions to the theory of transcendental numbers I, II, Acta Arith. 14 (1967/68) 65.Google Scholar
  51. [51]
    M. Waldschmidt, Diophantine approximation on linear algebraic groups, Chapter 1, Springer, New York U.S.A. (2000).Google Scholar
  52. [52]
    J. Davey, A. Hanany and J. Pasukonis, On the Classiffication of Brane Tilings, JHEP 01 (2010) 078 [arXiv:0909.2868] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    T.W. Brown, Complex matrix model duality, arXiv:1009.0674 [SPIRES].
  54. [54]
    C.E. Beasley and M.R. Plesser, Toric duality is Seiberg duality, JHEP 12 (2001) 001 [hep-th/0109053] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  55. [55]
    N. Seiberg, Electric-magnetic duality in supersymmetric nonAbelian gauge theories, Nucl. Phys. B 435 (1995) 129 [hep-th/9411149] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  56. [56]
    K. Ueda and M. Yamazaki, Toric Calabi-Yau four-folds dual to Chern-Simons-matter theories, JHEP 12 (2008) 045 [arXiv:0808.3768] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  57. [57]
    Y. Imamura and K. Kimura, Quiver Chern-Simons theories and crystals, JHEP 10 (2008) 114 [arXiv:0808.4155] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  58. [58]
    A. Hanany and A. Zaffaroni, Tilings, Chern-Simons Theories and M2 Branes, JHEP 10 (2008) 111 [arXiv:0808.1244] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  59. [59]
    A. Hanany, D. Vegh and A. Zaffaroni, Brane Tilings and M2 Branes, JHEP 03 (2009) 012 [arXiv:0809.1440] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  60. [60]
    F. Benini, C. Closset and S. Cremonesi, Chiral avors and M2-branes at toric CY4 singularities, JHEP 02 (2010) 036 [arXiv:0911.4127] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  61. [61]
    D.L. Jafferis, Quantum corrections to N = 2 Chern-Simons theories with avor and their AdS4 duals, arXiv:0911.4324 [SPIRES].
  62. [62]
    F. Benini, Y. Tachikawa and B. Wecht, Sicilian gauge theories and N = 1 dualities, JHEP 01 (2010) 088 [arXiv:0909.1327] [SPIRES].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Vishnu Jejjala
    • 1
  • Sanjaye Ramgoolam
    • 1
  • Diego Rodriguez-Gomez
    • 2
    • 3
  1. 1.Department of PhysicsQueen Mary, University of LondonLondonU.K.
  2. 2.Department of PhysicsTechnion, HaifaIsrael
  3. 3.Department of Mathematics and PhysicsUniversity of Haifa at OranimTivonIsrael

Personalised recommendations