Advertisement

Higgs production at the lHC

  • Julien Baglio
  • Abdelhak Djouadi
Open Access
Article

Abstract

We analyze the production of Higgs particles at the early stage of the CERN large Hadron Collider with a 7 TeV center of mass energy (lHC). We first consider the case of the Standard Model Higgs boson that is mainly produced in the gluon-gluon fusion channel and to be detected in its decays into electroweak gauge bosons, ggHWW, ZZ, γγ. The production cross sections at \( \sqrt {s} = 7\;{\text{TeV}} \) and the decay branching ratios, including all relevant higher order QCD and electroweak corrections, are evaluated. An emphasis is put on the various theoretical uncertainties that affect the production rates: the significant uncertainties from scale variation and from the parametrization of the parton distribution functions as well as the uncertainties which arise due to the use of an effective field theory in the calculation of the next-to-next-to-leading order corrections. The parametric uncertainties stemming from the values of the strong coupling constant and the heavy quark masses in the Higgs decay branching ratios, which turn out to be non-negligible, are also discussed. The implications for different center of mass energies of the proton collider, \( \sqrt {s} = 8 - 10\;{\text{TeV}} \) as well as for the design energy \( \sqrt {s} = 14\;{\text{TeV}} \), are briefly summarized. We then discuss the production of the neutral Higgs particles of the Minimal Supersymmetric extension of the Standard Model in the two main channels: gluon-gluon and bottom quark fusion leading to Higgs bosons which subsequently decay into tau lepton or b-quark pairs, \( gg,b\bar{b} \to {\text{Higgs}} \to {\tau^{+} }{\tau^{-} },b\bar{b} \). The Higgs production cross sections at the lHC and the decay branching ratios are analyzed. The associated theoretical uncertainties are found to be rather large and will have a significant impact on the parameter space of the model that can be probed.

Keywords

Higgs Physics Supersymmetric Standard Model Hadronic Colliders Standard Model 

References

  1. [1]
    P.W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett. 12 (1964) 132 [SPIRES].ADSGoogle Scholar
  2. [2]
    F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector Mesons, Phys. Rev. Lett. 13 (1964) 321 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    G.S. Guralnik, C.R. Hagen and T.W.B. Kibble, Global Conservation Laws and Massless Particles, Phys. Rev. Lett. 13 (1964) 585 [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    P.W. Higgs, Spontaneous Symmetry Breakdown without Massless Bosons, Phys. Rev. 145 (1966) 1156 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    A. Djouadi, The Anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [SPIRES].ADSCrossRefGoogle Scholar
  6. [6]
    M. Drees, R.M. Godbole and P. Roy, Theory and Phenomenology of Sparticles, World Scientific, New York U.S.A. (2004).Google Scholar
  7. [7]
    J. Gunion, H. Haber, G. Kane and S. Dawson, The Higgs Hunter’s Guide, Addison–Wesley, Reading U.S.A. (1990).Google Scholar
  8. [8]
    A. Djouadi, The Anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [SPIRES].ADSCrossRefGoogle Scholar
  9. [9]
    M. Spira, QCD effects in Higgs physics, Fortsch. Phys. 46 (1998) 203 [hep-ph/9705337] [SPIRES].ADSzbMATHCrossRefGoogle Scholar
  10. [10]
    S. Heinemeyer, W. Hollik and G. Weiglein, Electroweak precision observables in the minimal supersymmetric standard model, Phys. Rept. 425 (2006) 265 [hep-ph/0412214] [SPIRES].ADSCrossRefGoogle Scholar
  11. [11]
    S. Heinemeyer, MSSM Higgs physics at higher orders, Int. J. Mod. Phys. A 21 (2006) 2659 [hep-ph/0407244] [SPIRES].ADSGoogle Scholar
  12. [12]
    B.C. Allanach, A. Djouadi, J.L. Kneur, W. Porod and P. Slavich, Precise determination of the neutral Higgs boson masses in the MSSM, JHEP 09 (2004) 044 [hep-ph/0406166] [SPIRES].ADSCrossRefGoogle Scholar
  13. [13]
    LEP Working Group for Higgs boson searches collaboration, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [SPIRES].ADSGoogle Scholar
  14. [14]
    CDF and D0 collaboration, T. Aaltonen et al., Combination of Tevatron searches for the standard model Higgs boson in the W + W decay mode, Phys. Rev. Lett. 104 (2010) 061802 [arXiv:1001.4162] [SPIRES].ADSCrossRefGoogle Scholar
  15. [15]
    CDF and D0 collaboration, Combined CDF and D0 Upper Limits on Standard Model Higgs-Boson Production with up to 6.7 fb −1 of Data, arXiv:1007.4587 [SPIRES].
  16. [16]
    Tevatron New Phenomena & Higgs Working Group collaboration, D. Benjamin et al., Combined CDF and D0 upper limits on MSSM Higgs boson production in tau-tau final states with up to 2.2 fb 1, arXiv:1003.3363 [SPIRES].
  17. [17]
    R. Heuer, talk given at IWLC2010, CERN, Geneva Switzerland, October 2010.Google Scholar
  18. [18]
    ATLAS collaboration, ATLAS sensitivity prospects for Higgs boson production at the LHC running at 7,8 or 9 TeV, ATLAS report ATLAS–PHYS–PUB–2010–015.
  19. [19]
    CMS collaboration, The CMS Physics reach for searches at 7 TeV, CMS Note CMS-NOTE-2010-008.
  20. [20]
    LHC Higgs cross section Working Group, Handbook of LHC Higgs Cross sections, C. Mariotti, S. Dittmaier, G. Passarino and R. Tanaka eds., in preparation.Google Scholar
  21. [21]
    H.M. Georgi, S.L. Glashow, M.E. Machacek and D.V. Nanopoulos, Higgs Bosons from Two Gluon Annihilation in Proton Proton Collisions, Phys. Rev. Lett. 40 (1978) 692 [SPIRES].ADSCrossRefGoogle Scholar
  22. [22]
    M. Dittmar and H.K. Dreiner, How to find a Higgs boson with a mass between 155-GeV–180-GeV at the LHC, Phys. Rev. D 55 (1997) 167 [hep-ph/9608317] [SPIRES].ADSGoogle Scholar
  23. [23]
    S.L. Glashow, D.V. Nanopoulos and A. Yildiz, Associated Production of Higgs Bosons and Z Particles, Phys. Rev. D 18 (1978) 1724 [SPIRES].ADSGoogle Scholar
  24. [24]
    J. Baglio and A. Djouadi, Predictions for Higgs production at the Tevatron and the associated uncertainties, JHEP 10 (2010) 064 [arXiv:1003.4266] [SPIRES].ADSCrossRefGoogle Scholar
  25. [25]
    A. Djouadi, M. Spira and P.M. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett. B 264 (1991) 440 [SPIRES].ADSGoogle Scholar
  26. [26]
    S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283 [SPIRES].ADSCrossRefGoogle Scholar
  27. [27]
    M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [SPIRES].ADSCrossRefGoogle Scholar
  28. [28]
    R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [SPIRES].ADSCrossRefGoogle Scholar
  29. [29]
    C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [SPIRES].ADSCrossRefGoogle Scholar
  30. [30]
    V. Ravindran, J. Smith and W.L. van Neerven, NNLO corrections to the total cross section for Higgs boson production in hadron hadron collisions, Nucl. Phys. B 665 (2003) 325 [hep-ph/0302135] [SPIRES].ADSCrossRefGoogle Scholar
  31. [31]
    S. Catani, D. de Florian, M. Grazzini and P. Nason, Soft-gluon resummation for Higgs boson production at hadron colliders, JHEP 07 (2003) 028 [hep-ph/0306211] [SPIRES].ADSCrossRefGoogle Scholar
  32. [32]
    A. Djouadi, M. Spira and P.M. Zerwas, QCD Corrections to Hadronic Higgs Decays, Z. Phys. C 70 (1996) 427 [hep-ph/9511344] [SPIRES].Google Scholar
  33. [33]
    D.A. Dicus and S. Willenbrock, Higgs Boson Production from Heavy Quark Fusion, Phys. Rev. D 39 (1989) 751 [SPIRES].ADSGoogle Scholar
  34. [34]
    J.M. Campbell, R.K. Ellis, F. Maltoni and S. Willenbrock, Higgs boson production in association with a single bottom quark, Phys. Rev. D 67 (2003) 095002 [hep-ph/0204093] [SPIRES].ADSGoogle Scholar
  35. [35]
    F. Maltoni, Z. Sullivan and S. Willenbrock, Higgs-boson production via bottom-quark fusion, Phys. Rev. D 67 (2003) 093005 [hep-ph/0301033] [SPIRES].ADSGoogle Scholar
  36. [36]
    R.V. Harlander and W.B. Kilgore, Higgs boson production in bottom quark fusion at next-to-next-to-leading order, Phys. Rev. D 68 (2003) 013001 [hep-ph/0304035] [SPIRES].ADSGoogle Scholar
  37. [37]
    C. Anastasiou, R. Boughezal and F. Petriello, Mixed QCD-electroweak corrections to Higgs boson production in gluon fusion, JHEP 04 (2009) 003 [arXiv:0811.3458] [SPIRES].ADSCrossRefGoogle Scholar
  38. [38]
    D. de Florian and M. Grazzini, Higgs production through gluon fusion: updated cross sections at the Tevatron and the LHC, Phys. Lett. B 674 (2009) 291 [arXiv:0901.2427] [SPIRES].ADSGoogle Scholar
  39. [39]
    S. Moch and A. Vogt, Higher-order soft corrections to lepton pair and Higgs boson production, Phys. Lett. B 631 (2005) 48 [hep-ph/0508265] [SPIRES].ADSGoogle Scholar
  40. [40]
    V. Ravindran, Higher-order threshold effects to inclusive processes in QCD, Nucl. Phys. B 752 (2006) 173 [hep-ph/0603041] [SPIRES].ADSCrossRefGoogle Scholar
  41. [41]
    V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Renormalization-Group Improved Prediction for Higgs Production at Hadron Colliders, Eur. Phys. J. C 62 (2009) 333 [arXiv:0809.4283] [SPIRES].ADSCrossRefGoogle Scholar
  42. [42]
    G. Corcella and L. Magnea, Soft-gluon resummation effects on parton distributions, Phys. Rev. D 72 (2005) 074017 [hep-ph/0506278] [SPIRES].ADSGoogle Scholar
  43. [43]
    V. Ravindran, J. Smith and W.L. Van Neerven, Next-to-leading order QCD corrections to differential distributions of Higgs boson production in hadron hadron collisions, Nucl. Phys. B 634 (2002) 247 [hep-ph/0201114] [SPIRES].ADSCrossRefGoogle Scholar
  44. [44]
    C. Anastasiou, K. Melnikov and F. Petriello, Fully differential Higgs boson production and the di-photon signal through next-to-next-to-leading order, Nucl. Phys. B 724 (2005) 197 [hep-ph/0501130] [SPIRES].ADSCrossRefGoogle Scholar
  45. [45]
    S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002 [hep-ph/0703012] [SPIRES].ADSCrossRefGoogle Scholar
  46. [46]
    C. Anastasiou, S. Bucherer and Z. Kunszt, HPro: A NLO Monte-Carlo for Higgs production via gluon fusion with finite heavy quark masses, JHEP 10 (2009) 068 [arXiv:0907.2362] [SPIRES].ADSCrossRefGoogle Scholar
  47. [47]
    C. Anastasiou, G. Dissertori, M. Grazzini, F. Stockli and B.R. Webber, Perturbative QCD effects and the search for a HWWlνlν signal at the Tevatron, JHEP 08 (2009) 099 [arXiv:0905.3529] [SPIRES].ADSCrossRefGoogle Scholar
  48. [48]
    C. Anastasiou, Higgs production via gluon fusion, talk given at Higgs Hunting Workshop, Orsay France, 29–31 July 2010.Google Scholar
  49. [49]
    S. Actis, G. Passarino, C. Sturm and S. Uccirati, NNLO Computational Techniques: the Cases Hγγ and Hgg, Nucl. Phys. B 811 (2009) 182 [arXiv:0809.3667] [SPIRES].ADSzbMATHCrossRefGoogle Scholar
  50. [50]
    A. Djouadi and P. Gambino, Leading electroweak correction to Higgs boson production at proton colliders, Phys. Rev. Lett. 73 (1994) 2528 [hep-ph/9406432] [SPIRES].ADSCrossRefGoogle Scholar
  51. [51]
    U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Two-loop light fermion contribution to Higgs production and decays, Phys. Lett. B 595 (2004) 432 [hep-ph/0404071] [SPIRES].ADSGoogle Scholar
  52. [52]
    G. Degrassi and F. Maltoni, Two-loop electroweak corrections to Higgs production at hadron colliders, Phys. Lett. B 600 (2004) 255 [hep-ph/0407249] [SPIRES].ADSGoogle Scholar
  53. [53]
    S. Actis, G. Passarino, C. Sturm and S. Uccirati, NLO Electroweak Corrections to Higgs Boson Production at Hadron Colliders, Phys. Lett. B 670 (2008) 12 [arXiv:0809.1301] [SPIRES].ADSGoogle Scholar
  54. [54]
    E.L. Berger, Q.-H. Cao, C.B. Jackson, T. Liu and G. Shaughnessy, Higgs Boson Search Sensitivity in the HWW Dilepton Decay Mode at \( \sqrt {s} = 7 \) and 10 TeV, Phys. Rev. D 82 (2010) 053003 [arXiv:1003.3875] [SPIRES].ADSGoogle Scholar
  55. [55]
    F. Demartin, S. Forte, E. Mariani, J. Rojo and A. Vicini, The impact of PDF and alphas uncertainties on Higgs Production in gluon fusion at hadron colliders, Phys. Rev. D 82 (2010) 014002 [arXiv:1004.0962] [SPIRES].ADSGoogle Scholar
  56. [56]
    V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Updated Predictions for Higgs Production at the Tevatron and the LHC, arXiv:1008.3162 [SPIRES].
  57. [57]
    S. Alekhin, J. Blumlein, P. Jimenez-Delgado, S. Moch and E. Reya, NNLO Benchmarks for Gauge and Higgs Boson Production at TeV Hadron Colliders, Phys. Lett. B 697 (2011) 127 [arXiv:1011.6259] [SPIRES].ADSGoogle Scholar
  58. [58]
  59. [59]
    M. Spira, HIGLU: A Program for the Calculation of the Total Higgs Production Cross Section at Hadron Colliders via Gluon Fusion including QCD Corrections, hep-ph/9510347 [SPIRES].
  60. [60]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [SPIRES].ADSCrossRefGoogle Scholar
  61. [61]
    G. Altarelli, R.K. Ellis and G. Martinelli, Large perturbative corrections to the Drell-Yan process in QCD, Nucl. Phys. B 157 (1979) 461. ADSCrossRefGoogle Scholar
  62. [62]
    J. Kubar-Andre and F.E. Paige, Gluon Corrections to the Drell-Yan Model, Phys. Rev. D 19 (1979) 221 [SPIRES].ADSGoogle Scholar
  63. [63]
    T. Han and S. Willenbrock, QCD correction to the ppWH and ZH total cross-sections, Phys. Lett. B 273 (1991) 167 [SPIRES].ADSGoogle Scholar
  64. [64]
    J. Ohnemus and W.J. Stirling, Order α s corrections to the differential cross-section for the W H intermediate mass Higgs signal, Phys. Rev. D 47 (1993) 2722 [SPIRES].ADSGoogle Scholar
  65. [65]
    A. Djouadi and M. Spira, SUSY-QCD corrections to Higgs boson production at hadron colliders, Phys. Rev. D 62 (2000) 014004 [hep-ph/9912476] [SPIRES].ADSGoogle Scholar
  66. [66]
    R. Hamberg, W.L. van Neerven and T. Matsuura, A Complete calculation of the order α s 2 correction to the Drell-Yan K factor, Nucl. Phys. B 359 (1991) 343 [SPIRES].ADSCrossRefGoogle Scholar
  67. [67]
    O. Brein, A. Djouadi and R. Harlander, NNLO QCD corrections to the Higgs-strahlung processes at hadron colliders, Phys. Lett. B 579 (2004) 149 [hep-ph/0307206] [SPIRES].ADSGoogle Scholar
  68. [68]
    M.L. Ciccolini, S. Dittmaier and M. Krämer, Electroweak radiative corrections to associated W H and Z H production at hadron colliders, Phys. Rev. D 68 (2003) 073003 [hep-ph/0306234] [SPIRES].ADSGoogle Scholar
  69. [69]
    T. Han, G. Valencia and S. Willenbrock, Structure function approach to vector boson scattering in p p collisions, Phys. Rev. Lett. 69 (1992) 3274 [hep-ph/9206246] [SPIRES].ADSCrossRefGoogle Scholar
  70. [70]
    T. Figy, C. Oleari and D. Zeppenfeld, Next-to-leading order jet distributions for Higgs boson production via weak-boson fusion, Phys. Rev. D 68 (2003) 073005 [hep-ph/0306109] [SPIRES].ADSGoogle Scholar
  71. [71]
    P. Bolzoni, F. Maltoni, S. Moch and M. Zaro, Higgs Boson Production via Vector-Boson Fusion at Next-to-Next-to-Leading Order in QCD, Phys. Rev. Lett. 105 (2010) 011801. ADSCrossRefGoogle Scholar
  72. [72]
    P. Bolzoni, M. Zaro, F. Maltoni and S.-O. Moch, Higgs production at NNLO in QCD: the VBF channel, Nucl. Phys. Proc. Suppl. 205 206 (2010) 314 [arXiv:1006.2323] [SPIRES].CrossRefGoogle Scholar
  73. [73]
    M. Ciccolini, A. Denner and S. Dittmaier, Electroweak and QCD corrections to Higgs production via vector-boson fusion at the LHC, Phys. Rev. D 77 (2008) 013002 [arXiv:0710.4749] [SPIRES].ADSGoogle Scholar
  74. [74]
    W. Beenakker et al., Higgs radiation off top quarks at the Tevatron and the LHC, Phys. Rev. Lett. 87 (2001) 201805 [hep-ph/0107081] [SPIRES].ADSCrossRefGoogle Scholar
  75. [75]
    W. Beenakker et al., NLO QCD corrections to t anti-t H production in hadron collisions. ((U)), Nucl. Phys. B 653 (2003) 151 [hep-ph/0211352] [SPIRES].ADSCrossRefGoogle Scholar
  76. [76]
    L. Reina and S. Dawson, Next-to-leading order results for t anti-t h production at the Tevatron, Phys. Rev. Lett. 87 (2001) 201804 [hep-ph/0107101] [SPIRES].ADSCrossRefGoogle Scholar
  77. [77]
    S. Dawson, L.H. Orr, L. Reina and D. Wackeroth, Associated top quark Higgs boson production at the LHC, Phys. Rev. D 67 (2003) 071503 [hep-ph/0211438] [SPIRES].ADSGoogle Scholar
  78. [78]
    R.V. Harlander and K.J. Ozeren, Finite top mass effects for hadronic Higgs production at next-to-next-to-leading order, JHEP 11 (2009) 088 [arXiv:0909.3420] [SPIRES].ADSCrossRefGoogle Scholar
  79. [79]
    A. Pak, M. Rogal and M. Steinhauser, Finite top quark mass effects in NNLO Higgs boson production at LHC, JHEP 02 (2010) 025 [arXiv:0911.4662] [SPIRES].ADSCrossRefGoogle Scholar
  80. [80]
    R.V. Harlander, H. Mantler, S. Marzani and K.J. Ozeren, Higgs production in gluon fusion at next-to-next-to-leading order QCD for finite top mass, Eur. Phys. J. C 66 (2010) 359 [arXiv:0912.2104] [SPIRES].ADSCrossRefGoogle Scholar
  81. [81]
    S. Marzani, R.D. Ball, V. Del Duca, S. Forte and A. Vicini, Higgs production via gluon-gluon fusion with finite top mass beyond next-to-leading order, Nucl. Phys. B 800 (2008) 127 [arXiv:0801.2544] [SPIRES].ADSCrossRefGoogle Scholar
  82. [82]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Uncertainties on α S in global PDF analyses and implications for predicted hadronic cross sections, Eur. Phys. J. C 64 (2009) 653 [arXiv:0905.3531] [SPIRES].ADSCrossRefGoogle Scholar
  83. [83]
    P.M. Nadolsky et al., Implications of CTEQ global analysis for collider observables, Phys. Rev. D 78 (2008) 013004 [arXiv:0802.0007] [SPIRES].ADSGoogle Scholar
  84. [84]
    The NNPDF collaboration, R.D. Ball et al., Precision determination of electroweak parameters and the strange content of the proton from neutrino deep-inelastic scattering, Nucl. Phys. B 823 (2009) 195 [arXiv:0906.1958] [SPIRES].ADSCrossRefGoogle Scholar
  85. [85]
    P. Jimenez-Delgado and E. Reya, Variable Flavor Number Parton Distributions and Weak Gauge and Higgs Boson Production at Hadron Colliders at NNLO of QCD, Phys. Rev. D 80 (2009) 114011 [arXiv:0909.1711] [SPIRES].ADSGoogle Scholar
  86. [86]
    S. Alekhin, J. Blumlein, S. Klein and S. Moch, The 3-, 4-and 5-flavor NNLO Parton from Deep-Inelastic-Scattering Data and at Hadron Colliders, Phys. Rev. D 81 (2010) 014032 [arXiv:0908.2766] [SPIRES].ADSGoogle Scholar
  87. [87]
  88. [88]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [SPIRES].ADSGoogle Scholar
  89. [89]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Heavy-quark mass dependence in global PDF analyses and 3- and 4-flavour parton distributions, Eur. Phys. J. C 70 (2010) 51 [arXiv:1007.2624] [SPIRES].ADSCrossRefGoogle Scholar
  90. [90]
  91. [91]
    M. Cacciari, S. Frixione, M.L. Mangano, P. Nason and G. Ridolfi, Updated predictions for the total production cross sections of top and of heavier quark pairs at the Tevatron and at the LHC, JHEP 09 (2008) 127 [arXiv:0804.2800] [SPIRES].ADSCrossRefGoogle Scholar
  92. [92]
    N. Gray, D.J. Broadhurst, W. Grafe and K. Schilcher, Three-loop relation of quark \( \overline {MS} \) and pole masses, Z. Phys. C 48 (1990) 673 [SPIRES].ADSGoogle Scholar
  93. [93]
    K.G. Chetyrkin and M. Steinhauser, The relation between the MS-bar and the on-shell quark mass at order α s 3, Nucl. Phys. B 573 (2000) 617 [hep-ph/9911434] [SPIRES].ADSCrossRefGoogle Scholar
  94. [94]
    K. Melnikov and T.v. Ritbergen, The three-loop relation between the MS-bar and the pole quark masses, Phys. Lett. B 482 (2000) 99 [hep-ph/9912391] [SPIRES].ADSGoogle Scholar
  95. [95]
    S.G. Gorishnii, A.L. Kataev, S.A. Larin and L.R. Surguladze, Scheme dependence of the next to next-to-leading QCD corrections to Gamma(tot) (H0hadrons) and the spurious QCD infrared fixed point, Phys. Rev. D 43 (1991) 1633 [SPIRES].ADSGoogle Scholar
  96. [96]
    K.G. Chetyrkin, Quark mass anomalous dimension to O(α s 4 ), Phys. Lett. B 404 (1997) 161 [hep-ph/9703278] [SPIRES].ADSGoogle Scholar
  97. [97]
    J.A.M. Vermaseren, S.A. Larin and T. van Ritbergen, The 4-loop quark mass anomalous dimension and the invariant quark mass, Phys. Lett. B 405 (1997) 327 [hep-ph/9703284] [SPIRES].ADSGoogle Scholar
  98. [98]
    K.G. Chetyrkin, B.A. Kniehl and M. Steinhauser, Hadronic Higgs decay to order α s 4, Phys. Rev. Lett. 79 (1997) 353 [hep-ph/9705240] [SPIRES].ADSCrossRefGoogle Scholar
  99. [99]
    P.A. Baikov and K.G. Chetyrkin, Higgs decay into hadrons to order α s 5, Phys. Rev. Lett. 97 (2006) 061803 [hep-ph/0604194] [SPIRES].ADSCrossRefGoogle Scholar
  100. [100]
    A. Bredenstein, A. Denner, S. Dittmaier and M.M. Weber, Precise predictions for the Higgs-boson decay HWW/ZZ4 leptons, Phys. Rev. D 74 (2006) 013004 [hep-ph/0604011] [SPIRES].ADSGoogle Scholar
  101. [101]
    A. Bredenstein, A. Denner, S. Dittmaier and M.M Weber, Radiative corrections to the semileptonic and hadronic Higgs-boson decays HWW/ZZ → 4 fermions, JHEP 02 (2007) 080 [hep-ph/0611234] [SPIRES].ADSCrossRefGoogle Scholar
  102. [102]
    A. Ghinculov, Two loop heavy Higgs corrections to the Higgs fermionic width, Phys. Lett. B 337 (1994) 137 [hep-ph/9405394] [SPIRES].ADSGoogle Scholar
  103. [103]
    L. Durand, K. Riesselmann and B.A. Kniehl, Onset of strong interactions in the Higgs sector of the standard model: Hf anti-f at two loops, Phys. Rev. Lett. 72 (1994) 2534 [SPIRES].ADSCrossRefGoogle Scholar
  104. [104]
    V. Borodulin and G. Jikia, Analytic evaluation of two-loop renormalization constants of enhanced electroweak strength in the Higgs sector of the standard model, Phys. Lett. B 391 (1997) 434 [hep-ph/9609447] [SPIRES].ADSGoogle Scholar
  105. [105]
    A. Djouadi, M. Spira, J.J. van der Bij and P.M. Zerwas, QCD corrections to gamma gamma decays of Higgs particles in the intermediate mass range, Phys. Lett. B 257 (1991) 187 [SPIRES].ADSGoogle Scholar
  106. [106]
    A. Djouadi, M. Spira and P.M. Zerwas, Two photon decay widths of Higgs particles, Phys. Lett. B 311 (1993) 255 [hep-ph/9305335] [SPIRES].ADSGoogle Scholar
  107. [107]
    K.G. Chetyrkin et al., Charm and Bottom Quark Masses: an Update, Phys. Rev. D 80 (2009) 074010 [arXiv:0907.2110] [SPIRES].ADSGoogle Scholar
  108. [108]
    A. Djouadi, J. Kalinowski and M. Spira, HDECAY: A program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [SPIRES].ADSzbMATHCrossRefGoogle Scholar
  109. [109]
    A. Djouadi, N. Kauer and M. Kramer, in progress.Google Scholar
  110. [110]
    M. Carena, S. Heinemeyer, C. Wagner and G. Weiglein, Suggestions for benchmark scenarios for MSSM Higgs boson searches at hadron colliders, Eur. J. Phys. C 26 (2003) 601 [hep-ph/0202167] [SPIRES].ADSGoogle Scholar
  111. [111]
    E. Boos, A. Djouadi, M. Muhlleitner and A. Vologdin, The MSSM Higgs bosons in the intense coupling regime, Phys. Rev. D 66 (2002) 055004 [hep-ph/0205160] [SPIRES].ADSGoogle Scholar
  112. [112]
    E. Boos, A. Djouadi and A. Nikitenko, Detection of the neutral MSSM Higgs bosons in the intense-coupling regime at the LHC, Phys. Lett. B 578 (2004) 384 [hep-ph/0307079] [SPIRES].ADSGoogle Scholar
  113. [113]
    D.M. Pierce, J.A. Bagger, K.T. Matchev and R.-j. Zhang, Precision corrections in the minimal supersymmetric standard model, Nucl. Phys. B 491 (1997) 3 [hep-ph/9606211] [SPIRES].ADSCrossRefGoogle Scholar
  114. [114]
    M.S. Carena, D. Garcia, U. Nierste and C.E.M. Wagner, Effective Lagrangian for the \( \bar{t}b{H^{+} } \) interaction in the MSSM and charged Higgs phenomenology, Nucl. Phys. B 577 (2000) 88 [hep-ph/9912516] [SPIRES].ADSCrossRefGoogle Scholar
  115. [115]
    D. Noth and M. Spira, Higgs Boson Couplings to Bottom Quarks: Two-Loop Supersymmetry-QCD Corrections, Phys. Rev. Lett. 101 (2008) 181801 [arXiv:0808.0087] [SPIRES].ADSCrossRefGoogle Scholar
  116. [116]
    S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: a program for the calculation of the masses of the neutral CP-even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000) 76 [hep-ph/9812320] [SPIRES].ADSzbMATHCrossRefGoogle Scholar
  117. [117]
    A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: A Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426 [hep-ph/0211331] [SPIRES].ADSzbMATHCrossRefGoogle Scholar
  118. [118]
    S. Dawson, A. Djouadi and M. Spira, QCD corrections to SUSY Higgs production: The Role of squark loops, Phys. Rev. Lett. 77 (1996) 16 [hep-ph/9603423] [SPIRES].ADSCrossRefGoogle Scholar
  119. [119]
    R.V. Harlander and M. Steinhauser, Supersymmetric Higgs production in gluon fusion at next-to-leading order, JHEP 09 (2004) 066 [hep-ph/0409010] [SPIRES].ADSCrossRefGoogle Scholar
  120. [120]
    C. Anastasiou, S. Beerli, S. Bucherer, A. Daleo and Z. Kunszt, Two-loop amplitudes and master integrals for the production of a Higgs boson via a massive quark and a scalar-quark loop, JHEP 01 (2007) 082 [hep-ph/0611236] [SPIRES].ADSCrossRefGoogle Scholar
  121. [121]
    U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Analytic results for virtual QCD corrections to Higgs production and decay, JHEP 01 (2007) 021 [hep-ph/0611266] [SPIRES].ADSCrossRefGoogle Scholar
  122. [122]
    R. Bonciani, G. Degrassi and A. Vicini, Scalar Particle Contribution to Higgs Production via Gluon Fusion at NLO, JHEP 11 (2007) 095 [arXiv:0709.4227] [SPIRES].ADSCrossRefGoogle Scholar
  123. [123]
    M. Muhlleitner and M. Spira, Higgs boson production via gluon fusion: Squark loops at NLO QCD, Nucl. Phys. B 790 (2008) 1 [hep-ph/0612254] [SPIRES].ADSCrossRefGoogle Scholar
  124. [124]
    G. Degrassi and P. Slavich, On the NLO QCD corrections to Higgs production and decay in the MSSM, Nucl. Phys. B 805 (2008) 267 [arXiv:0806.1495] [SPIRES].ADSCrossRefGoogle Scholar
  125. [125]
    S. Dawson and C.B. Jackson, SUSY QCD Corrections to Associated Higgs-bottom Quark Production, Phys. Rev. D 77 (2008) 015019 [arXiv:0709.4519] [SPIRES].ADSGoogle Scholar
  126. [126]
    C. Anastasiou, S. Beerli and A. Daleo, The two-loop QCD amplitude ggh,H in the Minimal Supersymmetric Standard Model, Phys. Rev. Lett. 100 (2008) 241806 [arXiv:0803.3065] [SPIRES].ADSCrossRefGoogle Scholar
  127. [127]
    M. Muhlleitner, H. Rzehak and M. Spira, SUSY-QCD corrections to MSSM Higgs boson production via gluon fusion, PoS(RADCOR2009)043 [arXiv:1001.3214] [SPIRES].
  128. [128]
    S. Dittmaier, M. Krämer, 1 and M. Spira, Higgs radiation off bottom quarks at the Tevatron and the LHC, Phys. Rev. D 70 (2004) 074010 [hep-ph/0309204] [SPIRES].ADSGoogle Scholar
  129. [129]
    S. Dawson, C.B. Jackson, L. Reina and D. Wackeroth, Exclusive Higgs boson production with bottom quarks at hadron colliders, Phys. Rev. D 69 (2004) 074027 [hep-ph/0311067] [SPIRES].ADSGoogle Scholar
  130. [130]
    Higgs Working Group collaboration, K.A. Assamagan et al., The Higgs working group: Summary report 2003, hep-ph/0406152 [SPIRES].
  131. [131]
    J. Baglio and A. Djouadi, Revisiting the constraints on the Supersymmetric Higgs sector at the Tevatron, arXiv:1012.2748 [SPIRES].

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Laboratoire de Physique ThéoriqueUniversité Paris-Sud et CNRSOrsay CedexFrance

Personalised recommendations