Advertisement

Flow equations and attractors for black holes in \( \mathcal{N} = 2 \) U(1) gauged supergravity

  • Gianguido Dall’AgataEmail author
  • Alessandra Gnecchi
Article

Abstract

We investigate the existence of supersymmetric static dyonic black holes with spherical horizon in the context of \( \mathcal{N} = 2 \) U(1) gauged supergravity in four dimensions. We analyze the conditions for their existence and provide the general first-order flow equations driving the scalar fields and the metric warp factors from the asymptotic AdS4 geometry to the horizon. We work in a general duality-symmetric setup, which allows to describe both electric and magnetic gaugings. We also discuss the attractor mechanism and the issue of moduli (de-)stabilization.

Keywords

Black Holes in String Theory Supergravity Models 

References

  1. [1]
    W.A. Sabra, Anti-de Sitter BPS black holes in N = 2 gauged supergravity, Phys. Lett. B 458 (1999) 36 [hep-th/9903143] [SPIRES].MathSciNetADSGoogle Scholar
  2. [2]
    A.H. Chamseddine and W.A. Sabra, Magnetic and dyonic black holes in D = 4 gauged supergravity, Phys. Lett. B 485 (2000) 301 [hep-th/0003213] [SPIRES].MathSciNetADSGoogle Scholar
  3. [3]
    M.M. Caldarelli and D. Klemm, Supersymmetry of anti-de Sitter black holes, Nucl. Phys. B 545 (1999) 434 [hep-th/9808097] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    M.J. Duff and J.T. Liu, Anti-de Sitter black holes in gauged N = 8 supergravity, Nucl. Phys. B 554 (1999) 237 [hep-th/9901149] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    S. Cucu, H. Lü and J.F. Vazquez-Poritz, Interpolating from AdS D−2 × S 2 to AdS D , Nucl. Phys. B 677 (2004) 181 [hep-th/0304022] [SPIRES].ADSCrossRefGoogle Scholar
  6. [6]
    S. Bellucci, S. Ferrara, A. Marrani and A. Yeranyan, D = 4 Black Hole Attractors in N = 2 Supergravity with Fayet-Iliopoulos Terms, Phys. Rev. D 77 (2008) 085027 [arXiv:0802.0141] [SPIRES].MathSciNetADSGoogle Scholar
  7. [7]
    T. Kimura, Non-supersymmetric Extremal RN-AdS Black Holes in N = 2 Gauged Supergravity, JHEP 09 (2010) 061 [arXiv:1005.4607] [SPIRES].ADSCrossRefGoogle Scholar
  8. [8]
    S.L. Cacciatori and D. Klemm, Supersymmetric AdS 4 black holes and attractors, JHEP 01 (2010) 085 [arXiv:0911.4926] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    S. Ferrara and R. Kallosh, Supersymmetry and Attractors, Phys. Rev. D 54 (1996) 1514 [hep-th/9602136] [SPIRES].MathSciNetADSGoogle Scholar
  10. [10]
    A. Ceresole and G. Dall’Agata, Flow Equations for Non-BPS Extremal Black Holes, JHEP 03 (2007) 110 [hep-th/0702088] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    J. Polchinski and A. Strominger, New Vacua for Type II String Theory, Phys. Lett. B 388 (1996) 736 [hep-th/9510227] [SPIRES].MathSciNetADSGoogle Scholar
  12. [12]
    J. Michelson, Compactifications of type IIB strings to four dimensions with non-trivial classical potential, Nucl. Phys. B 495 (1997) 127 [hep-th/9610151] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    G. Dall’Agata, Type IIB supergravity compactified on a Calabi-Yau manifold with H-fluxes, JHEP 11 (2001) 005 [hep-th/0107264] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    J.P. Hsu, A. Maloney and A. Tomasiello, Black hole attractors and pure spinors, JHEP 09 (2006) 048 [hep-th/0602142] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    U.H. Danielsson, N. Johansson and M. Larfors, Stability of flux vacua in the presence of charged black holes, JHEP 09 (2006) 069 [hep-th/0605106] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    D.R. Green, E. Silverstein and D. Starr, Attractor explosions and catalyzed vacuum decay, Phys. Rev. D 74 (2006) 024004 [hep-th/0605047] [SPIRES].MathSciNetADSGoogle Scholar
  17. [17]
    K. Hristov, H. Looyestijn and S. Vandoren, BPS black holes in N = 2 D = 4 gauged supergravities, JHEP 08 (2010) 103 [arXiv:1005.3650] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    M. Huebscher, P. Meessen, T. Ortín and S. Vaula, Supersymmetric N = 2 Einstein-Yang-Mills monopoles and covariant attractors, Phys. Rev. D 78 (2008) 065031 [arXiv:0712.1530] [SPIRES].ADSGoogle Scholar
  19. [19]
    M. Huebscher, P. Meessen, T. Ortín and S. Vaula, N=2 Einstein-Yang-Mills’s BPS solutions, JHEP 09 (2008) 099 [arXiv:0806.1477] [SPIRES].ADSCrossRefGoogle Scholar
  20. [20]
    A. Ceresole, R. D’Auria and S. Ferrara, The Symplectic Structure of N = 2 Supergravity and its Central Extension, Nucl. Phys. Proc. Suppl. 46 (1996) 67 [hep-th/9509160] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. [21]
    J. Louis, P. Smyth and H. Triendl, Spontaneous N = 2 to N = 1 Supersymmetry Breaking in Supergravity and Type II String Theory, JHEP 02 (2010) 103 [arXiv:0911.5077] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    G. Dall’Agata, R. D’Auria, L. Sommovigo and S. Vaula, D = 4, N = 2 gauged supergravity in the presence of tensor multiplets, Nucl. Phys. B 682 (2004) 243 [hep-th/0312210] [SPIRES].MathSciNetADSGoogle Scholar
  23. [23]
    R. D’Auria, L. Sommovigo and S. Vaula, N = 2 supergravity Lagrangian coupled to tensor multiplets with electric and magnetic fluxes, JHEP 11 (2004) 028 [hep-th/0409097] [SPIRES].MathSciNetCrossRefGoogle Scholar
  24. [24]
    L. Andrianopoli, R. D’Auria and L. Sommovigo, D = 4, N = 2 Supergravity in the Presence of Vector-Tensor Multiplets and the Role of higher p-forms in the Framework of Free Differential Algebras, Adv. Stud. Theor. Phys. 1 (2008) 561 [arXiv:0710.3107] [SPIRES].MathSciNetGoogle Scholar
  25. [25]
    S.L. Cacciatori, D. Klemm, D.S. Mansi and E. Zorzan, All timelike supersymmetric solutions of N = 2, D = 4 gauged supergravity coupled to abelian vector multiplets, JHEP 05 (2008) 097 [arXiv:0804.0009] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    F. Denef, Supergravity flows and D-brane stability, JHEP 08 (2000) 050 [hep-th/0005049] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    S. Ferrara, R. Kallosh and A. Strominger, N=2 extremal black holes, Phys. Rev. D 52 (1995) 5412 [hep-th/9508072] [SPIRES].MathSciNetADSGoogle Scholar
  28. [28]
    K. Behrndt, R. Kallosh, J. Rahmfeld, M. Shmakova and W.K. Wong, STU black holes and string triality, Phys. Rev. D 54 (1996) 6293 [hep-th/9608059] [SPIRES].MathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Dipartimento di Fisica “Galileo Galilei”Università di PadovaPadovaItaly
  2. 2.INFN, Sezione di PadovaPadovaItaly

Personalised recommendations