Inverse magnetic catalysis in dense holographic matter

Article

Abstract

We study the chiral phase transition in a magnetic field at finite temperature and chemical potential within the Sakai-Sugimoto model, a holographic top-down approach to (large-N c ) QCD. We consider the limit of a small separation of the flavor D8-branes, which corresponds to a dual field theory comparable to a Nambu-Jona Lasinio (NJL) model. Mapping out the surface of the chiral phase transition in the parameter space of magnetic field strength, quark chemical potential, and temperature, we find that for small temperatures the addition of a magnetic field decreases the critical chemical potential for chiral symmetry restoration — in contrast to the case of vanishing chemical potential where, in accordance with the familiar phenomenon of magnetic catalysis, the magnetic field favors the chirally broken phase. This “inverse magnetic catalysis” (IMC) appears to be associated with a previously found magnetic phase transition within the chirally symmetric phase that shows an intriguing similarity to a transition into the lowest Landau level. We estimate IMC to persist up to 1019 G at low temperatures.

Keywords

Gauge-gravity correspondence Chiral Lagrangians QCD 

References

  1. [1]
    K.G. Klimenko, Three-dimensional Gross-Neveu model in an external magnetic field, Theor. Math. Phys. 89 (1992) 1161 [SPIRES].MathSciNetCrossRefGoogle Scholar
  2. [2]
    K.G. Klimenko, Three-dimensional Gross-Neveu model at nonzero temperature and in an external magnetic field, Theor. Math. Phys. 90 (1992) 1 [SPIRES].MathSciNetCrossRefGoogle Scholar
  3. [3]
    V.P. Gusynin, V.A. Miransky and I.A. Shovkovy, Catalysis of dynamical flavor symmetry breaking by a magnetic field in (2 + 1)-dimensions, Phys. Rev. Lett. 73 (1994) 3499 [hep-ph/9405262] [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    V.P. Gusynin, V.A. Miransky and I.A. Shovkovy, Dynamical flavor symmetry breaking by a magnetic field in (2 + 1)-dimensions, Phys. Rev. D 52 (1995) 4718 [hep-th/9407168] [SPIRES].ADSGoogle Scholar
  5. [5]
    V.P. Gusynin, V.A. Miransky and I.A. Shovkovy, Dimensional reduction and dynamical chiral symmetry breaking by a magnetic field in (3 + 1)-dimensions, Phys. Lett. B 349 (1995) 477 [hep-ph/9412257] [SPIRES].ADSGoogle Scholar
  6. [6]
    V.P. Gusynin, V.A. Miransky and I.A. Shovkovy, Dynamical chiral symmetry breaking by a magnetic field in QED, Phys. Rev. D 52 (1995) 4747 [hep-ph/9501304] [SPIRES].ADSGoogle Scholar
  7. [7]
    V.G. Filev, C.V. Johnson, R.C. Rashkov and K.S. Viswanathan, Flavoured large-N gauge theory in an external magnetic field, JHEP 10 (2007) 019 [hep-th/0701001] [SPIRES].ADSCrossRefGoogle Scholar
  8. [8]
    J. Erdmenger, R. Meyer and J.P. Shock, AdS/CFT with Flavour in Electric and Magnetic Kalb-Ramond Fields, JHEP 12 (2007) 091 [arXiv:0709.1551] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    V.G. Filev, C.V. Johnson and J.P. Shock, Universal Holographic Chiral Dynamics in an External Magnetic Field, JHEP 08 (2009) 013 [arXiv:0903.5345] [SPIRES].ADSCrossRefGoogle Scholar
  10. [10]
    V.G. Filev and R.C. Rashkov, Magnetic Catalysis of Chiral Symmetry Breaking. A Holographic Prospective, Adv. High Energy Phys. 2010 (2010) 473206 [arXiv:1010.0444] [SPIRES].MathSciNetGoogle Scholar
  11. [11]
    V. Skokov, A.Y. Illarionov and V. Toneev, Estimate of the magnetic field strength in heavy-ion collisions, Int. J. Mod. Phys. A 24 (2009) 5925 [arXiv:0907.1396] [SPIRES].ADSGoogle Scholar
  12. [12]
    R.C. Duncan and C. Thompson, Formation of very strongly magnetized neutron stars — implications for gamma-ray bursts, Astrophys. J. 392 (1992) L9 [SPIRES].ADSCrossRefGoogle Scholar
  13. [13]
    D. Lai and S.L. Shapiro, Cold equation of state in a strong magnetic field — Effects of inverse beta-decay, Astrophys. J. 383 (1991) 745. ADSCrossRefGoogle Scholar
  14. [14]
    K. Novoselov et al., Electric Field Effect in Atomically Thin Carbon Films, Science 306 (2004) 666 [cond-mat/0410550].ADSCrossRefGoogle Scholar
  15. [15]
    V.P. Gusynin, V.A. Miransky, S.G. Sharapov and I.A. Shovkovy, Excitonic gap, phase transition and quantum Hall effect in graphene, Phys. Rev. B 74 (2006) 195429 [cond-mat/0605348] [SPIRES].ADSGoogle Scholar
  16. [16]
    I.F. Herbut, Interactions and phase transitions on graphene’s honeycomb lattice, Phys. Rev. Lett. 97 (2006) 146401 [cond-mat/0606195] [SPIRES].ADSCrossRefGoogle Scholar
  17. [17]
    E.V. Gorbar, V.P. Gusynin, V.A. Miransky and I.A. Shovkovy, Dynamics in the quantum Hall effect and the phase diagram of graphene, Phys. Rev. B 78 (2008) 085437 [arXiv:0806.0846] [SPIRES].ADSGoogle Scholar
  18. [18]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].MathSciNetADSGoogle Scholar
  20. [20]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].MathSciNetMATHGoogle Scholar
  21. [21]
    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [SPIRES].MathSciNetMATHGoogle Scholar
  22. [22]
    T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor. Phys. 113 (2005) 843 [hep-th/0412141] [SPIRES].ADSMATHCrossRefGoogle Scholar
  23. [23]
    T. Sakai and S. Sugimoto, More on a holographic dual of QCD, Prog. Theor. Phys. 114 (2005) 1083 [hep-th/0507073] [SPIRES].ADSMATHCrossRefGoogle Scholar
  24. [24]
    E. Antonyan, J.A. Harvey, S. Jensen and D. Kutasov, NJL and QCD from string theory, hep-th/0604017 [SPIRES].
  25. [25]
    J.L. Davis, M. Gutperle, P. Kraus and I. Sachs, Stringy NJL and Gross-Neveu models at finite density and temperature, JHEP 10 (2007) 049 [arXiv:0708.0589] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    M. Edalati and J.F. Vazquez-Poritz, Chiral Condensates in Finite Density Holographic NJL Model from String Worldsheets, arXiv:0906.5336 [SPIRES].
  27. [27]
    D. Ebert, K.G. Klimenko, M.A. Vdovichenko and A.S. Vshivtsev, Magnetic oscillations in dense cold quark matter with four-fermion interactions, Phys. Rev. D 61 (2000) 025005 [hep-ph/9905253] [SPIRES].
  28. [28]
    D. Ebert and K.G. Klimenko, Quark droplets stability induced by external magnetic field, Nucl. Phys. A 728 (2003) 203 [hep-ph/0305149] [SPIRES].ADSGoogle Scholar
  29. [29]
    T. Inagaki, D. Kimura and T. Murata, Four-fermion interaction model in a constant magnetic field at finite temperature and chemical potential, Prog. Theor. Phys. 111 (2004) 371 [hep-ph/0312005] [SPIRES].ADSMATHCrossRefGoogle Scholar
  30. [30]
    J.K. Boomsma and D. Boer, The influence of strong magnetic fields and instantons on the phase structure of the two-flavor NJL model, Phys. Rev. D 81 (2010) 074005 [arXiv:0911.2164] [SPIRES].ADSGoogle Scholar
  31. [31]
    I.E. Frolov, V.C. Zhukovsky and K.G. Klimenko, Chiral density waves in quark matter within the Nambu-Jona-Lasinio model in an external magnetic field, Phys. Rev. D 82 (2010) 076002 [arXiv:1007.2984] [SPIRES].ADSGoogle Scholar
  32. [32]
    S. Fayazbakhsh and N. Sadooghi, Phase diagram of hot magnetized two-flavor color superconducting quark matter, arXiv:1009.6125 [SPIRES].
  33. [33]
    B. Chatterjee, H. Mishra and A. Mishra, Vacuum structure and chiral symmetry breaking in strong magnetic fields for hot and dense quark matter, arXiv:1101.0498 [SPIRES].
  34. [34]
    G. Lifschytz and M. Lippert, Holographic Magnetic Phase Transition, Phys. Rev. D 80 (2009) 066007 [arXiv:0906.3892] [SPIRES].ADSGoogle Scholar
  35. [35]
    E.G. Thompson and D.T. Son, Magnetized baryonic matter in holographic QCD, Phys. Rev. D 78 (2008) 066007 [arXiv:0806.0367] [SPIRES].ADSGoogle Scholar
  36. [36]
    P. Basu, J. He, A. Mukherjee and H.-H. Shieh, Holographic Non-Fermi Liquid in a Background Magnetic Field, Phys. Rev. D 82 (2010) 044036 [arXiv:0908.1436] [SPIRES].ADSGoogle Scholar
  37. [37]
    F. Denef, S.A. Hartnoll and S. Sachdev, Quantum oscillations and black hole ringing, Phys. Rev. D 80 (2009) 126016 [arXiv:0908.1788] [SPIRES].ADSGoogle Scholar
  38. [38]
    T. Albash and C.V. Johnson, Holographic Aspects of Fermi Liquids in a Background Magnetic Field, J. Phys. A 43 (2010) 345405 [arXiv:0907.5406] [SPIRES].MathSciNetGoogle Scholar
  39. [39]
    T. Albash and C.V. Johnson, Landau Levels, Magnetic Fields and Holographic Fermi Liquids, J. Phys. A 43 (2010) 345404 [arXiv:1001.3700] [SPIRES].MathSciNetGoogle Scholar
  40. [40]
    O. Bergman, G. Lifschytz and M. Lippert, Magnetic properties of dense holographic QCD, Phys. Rev. D 79 (2009) 105024 [arXiv:0806.0366] [SPIRES].ADSGoogle Scholar
  41. [41]
    A. Rebhan, A. Schmitt and S.A. Stricker, Meson supercurrents and the Meissner effect in the Sakai-Sugimoto model, JHEP 05 (2009) 084 [arXiv:0811.3533] [SPIRES].ADSCrossRefGoogle Scholar
  42. [42]
    A. Rebhan, A. Schmitt and S.A. Stricker, Anomalies and the chiral magnetic effect in the Sakai-Sugimoto model, JHEP 01 (2010) 026 [arXiv:0909.4782] [SPIRES].ADSCrossRefGoogle Scholar
  43. [43]
    N. Horigome and Y. Tanii, Holographic chiral phase transition with chemical potential, JHEP 01 (2007) 072 [hep-th/0608198] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    O. Bergman, G. Lifschytz and M. Lippert, Response of Holographic QCD to Electric and Magnetic Fields, JHEP 05 (2008) 007 [arXiv:0802.3720] [SPIRES].ADSCrossRefGoogle Scholar
  45. [45]
    C.V. Johnson and A. Kundu, External Fields and Chiral Symmetry Breaking in the Sakai-Sugimoto Model, JHEP 12 (2008) 053 [arXiv:0803.0038] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    N. Evans, A. Gebauer, K.-Y. Kim and M. Magou, Holographic Description of the Phase Diagram of a Chiral Symmetry Breaking Gauge Theory, JHEP 03 (2010) 132 [arXiv:1002.1885] [SPIRES].ADSCrossRefGoogle Scholar
  47. [47]
    K. Jensen, A. Karch and E.G. Thompson, A Holographic Quantum Critical Point at Finite Magnetic Field and Finite Density, JHEP 05 (2010) 015 [arXiv:1002.2447] [SPIRES].ADSCrossRefGoogle Scholar
  48. [48]
    K. Jensen, A. Karch, D.T. Son and E.G. Thompson, Holographic Berezinskii-Kosterlitz-Thouless Transitions, Phys. Rev. Lett. 105 (2010) 041601 [arXiv:1002.3159] [SPIRES].ADSCrossRefGoogle Scholar
  49. [49]
    N. Evans, A. Gebauer, K.-Y. Kim and M. Magou, Phase diagram of the D3/D5 system in a magnetic field and a BKT transition, arXiv:1003.2694 [SPIRES].
  50. [50]
    O. Aharony, J. Sonnenschein and S. Yankielowicz, A holographic model of deconfinement and chiral symmetry restoration, Annals Phys. 322 (2007) 1420 [hep-th/0604161] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar
  51. [51]
    A.J. Mizher, M.N. Chernodub and E.S. Fraga, Phase diagram of hot QCD in an external magnetic field: possible splitting of deconfinement and chiral transitions, Phys. Rev. D 82 (2010) 105016 [arXiv:1004.2712] [SPIRES].ADSGoogle Scholar
  52. [52]
    R. Gatto and M. Ruggieri, Dressed Polyakov loop and phase diagram of hot quark matter under magnetic field, Phys. Rev. D 82 (2010) 054027 [arXiv:1007.0790] [SPIRES].ADSGoogle Scholar
  53. [53]
    R. Gatto and M. Ruggieri, Deconfinement and Chiral Symmetry Restoration in a Strong Magnetic Background, arXiv:1012.1291 [SPIRES].
  54. [54]
    M. D’Elia, S. Mukherjee and F. Sanfilippo, QCD Phase Transition in a Strong Magnetic Background, Phys. Rev. D 82 (2010) 051501 [arXiv:1005.5365] [SPIRES].ADSGoogle Scholar
  55. [55]
    L. McLerran and R.D. Pisarski, Phases of Cold, Dense Quarks at Large-N c, Nucl. Phys. A 796 (2007) 83 [arXiv:0706.2191] [SPIRES].ADSGoogle Scholar
  56. [56]
    D.T. Son and M.A. Stephanov, Axial anomaly and magnetism of nuclear and quark matter, Phys. Rev. D 77 (2008) 014021 [arXiv:0710.1084] [SPIRES].ADSGoogle Scholar
  57. [57]
    A. Gynther, K. Landsteiner, F. Pena-Benitez and A. Rebhan, Holographic Anomalous Conductivities and the Chiral Magnetic Effect, arXiv:1005.2587 [SPIRES].
  58. [58]
    O. Bergman, G. Lifschytz and M. Lippert, Holographic Nuclear Physics, JHEP 11 (2007) 056 [arXiv:0708.0326] [SPIRES].ADSCrossRefGoogle Scholar
  59. [59]
    M. Rozali, H.-H. Shieh, M. Van Raamsdonk and J. Wu, Cold Nuclear Matter In Holographic QCD, JHEP 01 (2008) 053 [arXiv:0708.1322] [SPIRES].ADSCrossRefGoogle Scholar
  60. [60]
    D. Yamada, A Comparative Study of NJL and Sakai-Sugimoto Models, arXiv:0909.1494 [SPIRES].
  61. [61]
    M.G. Alford, A. Schmitt, K. Rajagopal and T. Schäfer, Color superconductivity in dense quark matter, Rev. Mod. Phys. 80 (2008) 1455 [arXiv:0709.4635] [SPIRES].ADSCrossRefGoogle Scholar
  62. [62]
    A.M. Clogston, Upper Limit for the Critical Field in Hard Superconductors, Phys. Rev. Lett. 9 (1962) 266 [SPIRES].ADSCrossRefGoogle Scholar
  63. [63]
    B. Chandrasekhar, A note on the maximum critical field of high-field superconductors, Appl. Phys. Lett. 1 (1962) 7. ADSCrossRefGoogle Scholar
  64. [64]
    E.V. Gorbar, V.A. Miransky and I.A. Shovkovy, Chiral asymmetry of the Fermi surface in dense relativistic matter in a magnetic field, Phys. Rev. C 80 (2009) 032801 [arXiv:0904.2164] [SPIRES].ADSGoogle Scholar
  65. [65]
    E. Gorbar, V. Miransky and I. Shovkovy, Dynamics in the normal ground state of dense relativistic matter in a magnetic field, arXiv:1101.4954 [SPIRES].
  66. [66]
    Y. Aoki, Z. Fodor, S.D. Katz and K.K. Szabó, The QCD transition temperature: Results with physical masses in the continuum limit, Phys. Lett. B 643 (2006) 46 [hep-lat/0609068] [SPIRES].ADSGoogle Scholar
  67. [67]
    Y. Aoki, G. Endrődi, Z. Fodor, S.D. Katz and K.K. Szabó, The order of the quantum chromodynamics transition predicted by the standard model of particle physics, Nature 443 (2006) 675 [hep-lat/0611014] [SPIRES].ADSCrossRefGoogle Scholar
  68. [68]
    A. Rebhan and P. Romatschke, HTL quasiparticle models of deconfined QCD at finite chemical potential, Phys. Rev. D 68 (2003) 025022 [hep-ph/0304294] [SPIRES].ADSGoogle Scholar
  69. [69]
    A. Kurkela, P. Romatschke and A. Vuorinen, Cold Quark Matter, Phys. Rev. D 81 (2010) 105021 [arXiv:0912.1856] [SPIRES].ADSGoogle Scholar
  70. [70]
    E.V. Gorbar, V.A. Miransky and I.A. Shovkovy, Chiral asymmetry and axial anomaly in magnetized relativistic matter, Phys. Lett. B 695 (2011) 354 [arXiv:1009.1656] [SPIRES].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikTechnische Universität WienViennaAustria

Personalised recommendations