Advertisement

Interleaved parton showers and tuning prospects

  • Richard Corke
  • Torbjörn Sjöstrand
Article

Abstract

General-purpose Monte Carlo event generators have become important tools in particle physics, allowing the simulation of exclusive hadronic final states. In this article we examine the Pythia 8 generator, in particular focusing on its parton-shower algorithms. Some relevant new additions to the code are introduced, that should allow for a better description of data. We also implement and compare with 2 → 3 real-emission QCD matrix elements, to check how well the shower algorithm fills the phase space away from the soft and collinear regions. A tuning of the generator to Tevatron data is performed for two PDF sets and the impact of first new LHC data is examined.

Keywords

QCD Phenomenology Phenomenological Models 

References

  1. [1]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].ADSCrossRefGoogle Scholar
  2. [2]
    G. Marchesini and B.R. Webber, Simulation of QCD Jets Including Soft Gluon Interference, Nucl. Phys. B 238 (1984) 1 [SPIRES].ADSCrossRefGoogle Scholar
  3. [3]
    G. Marchesini and B.R. Webber, Monte Carlo Simulation of General Hard Processes with Coherent QCD Radiation, Nucl. Phys. B 310 (1988) 461 [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    V.N. Gribov and L.N. Lipatov, Deep inelastic e p scattering in perturbation theory, Sov. J. Nucl. Phys. 15 (1972) 438 [SPIRES].Google Scholar
  5. [5]
    G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys. B 126 (1977) 298 [SPIRES].ADSCrossRefGoogle Scholar
  6. [6]
    Y.L. Dokshitzer, Calculation of the Structure Functions for Deep Inelastic Scattering and e + e Annihilation by Perturbation Theory in Quantum Chromodynamics, Sov. Phys. JETP 46 (1977) 641 [SPIRES].ADSGoogle Scholar
  7. [7]
    V.V. Sudakov, Vertex parts at very high-energies in quantum electrodynamics, Sov. Phys. JETP 3 (1956) 65 [SPIRES].MathSciNetMATHGoogle Scholar
  8. [8]
    M. Bahr et al., HERWIG++ Physics and Manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [SPIRES].ADSCrossRefGoogle Scholar
  9. [9]
    T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [SPIRES].ADSCrossRefGoogle Scholar
  10. [10]
    S. Catani and M.H. Seymour, A general algorithm for calculating jet cross sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [hep-ph/9605323] [SPIRES].ADSCrossRefGoogle Scholar
  11. [11]
    Z. Nagy and D.E. Soper, A new parton shower algorithm: Shower evolution, matching at leading and next-to-leading order level, hep-ph/0601021 [SPIRES].
  12. [12]
    S. Schumann and F. Krauss, A Parton shower algorithm based on Catani-Seymour dipole factorisation, JHEP 03 (2008) 038 [arXiv:0709.1027] [SPIRES].ADSCrossRefGoogle Scholar
  13. [13]
    J.-C. Winter and F. Krauss, Initial-state showering based on colour dipoles connected to incoming parton lines, JHEP 07 (2008) 040 [arXiv:0712.3913] [SPIRES].ADSCrossRefGoogle Scholar
  14. [14]
    W.T. Giele, D.A. Kosower and P.Z. Skands, A Simple shower and matching algorithm, Phys. Rev. D 78 (2008) 014026 [arXiv:0707.3652] [SPIRES].ADSGoogle Scholar
  15. [15]
    M. Dinsdale, M. Ternick and S. Weinzierl, Parton showers from the dipole formalism, Phys. Rev. D 76 (2007) 094003 [arXiv:0709.1026] [SPIRES].ADSGoogle Scholar
  16. [16]
    T. Sjöstrand and M. van Zijl, A Multiple Interaction Model for the Event Structure in Hadron Collisions, Phys. Rev. D 36 (1987) 2019 [SPIRES].ADSGoogle Scholar
  17. [17]
    T. Sjöstrand and P.Z. Skands, Transverse-momentum-ordered showers and interleaved multiple interactions, Eur. Phys. J. C 39 (2005) 129 [hep-ph/0408302] [SPIRES].ADSCrossRefGoogle Scholar
  18. [18]
    T. Sjöstrand and P.Z. Skands, Multiple interactions and the structure of beam remnants, JHEP 03 (2004) 053 [hep-ph/0402078] [SPIRES].ADSCrossRefGoogle Scholar
  19. [19]
    G. Gustafson, Dual Description of a Confined Color Field, Phys. Lett. B 175 (1986) 453 [SPIRES].ADSGoogle Scholar
  20. [20]
    G. Gustafson and U. Pettersson, Dipole Formulation of QCD Cascades, Nucl. Phys. B 306 (1988) 746 [SPIRES].ADSCrossRefGoogle Scholar
  21. [21]
    L. Lönnblad, ARIADNE version 4: A Program for simulation of QCD cascades implementing the color dipole model, Comput. Phys. Commun. 71 (1992) 15 [SPIRES].ADSCrossRefGoogle Scholar
  22. [22]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [SPIRES].ADSMATHCrossRefGoogle Scholar
  23. [23]
    H. Hoeth, private communication (2009).Google Scholar
  24. [24]
    CDF collaboration, R.D. Field, The underlying event in hard scattering processes, hep-ph/0201192 [SPIRES].
  25. [25]
    J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473 [arXiv:0706.2569] [SPIRES].ADSCrossRefGoogle Scholar
  26. [26]
    S. Catani, F. Krauss, R. Kuhn and B.R. Webber, QCD Matrix Elements + Parton Showers, JHEP 11 (2001) 063 [hep-ph/0109231] [SPIRES].ADSCrossRefGoogle Scholar
  27. [27]
    L. Lönnblad, Correcting the colour-dipole cascade model with fixed order matrix elements, JHEP 05 (2002) 046 [hep-ph/0112284] [SPIRES].CrossRefGoogle Scholar
  28. [28]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [SPIRES].ADSCrossRefGoogle Scholar
  29. [29]
    S. Frixione, P. Nason and B.R. Webber, Matching NLO QCD and parton showers in heavy flavour production, JHEP 08 (2003) 007 [hep-ph/0305252] [SPIRES].ADSCrossRefGoogle Scholar
  30. [30]
    S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [SPIRES].ADSCrossRefGoogle Scholar
  31. [31]
    C.W. Bauer, F.J. Tackmann and J. Thaler, GenEvA. I. A New framework for event generation, JHEP 12 (2008) 010 [arXiv:0801.4026] [SPIRES].ADSCrossRefGoogle Scholar
  32. [32]
    N. Lavesson and L. Lönnblad, Extending CKKW-merging to One-Loop Matrix Elements, JHEP 12 (2008) 070 [arXiv:0811.2912] [SPIRES].ADSCrossRefGoogle Scholar
  33. [33]
    K. Hamilton and P. Nason, Improving NLO-parton shower matched simulations with higher order matrix elements, JHEP 06 (2010) 039 [arXiv:1004.1764] [SPIRES].ADSCrossRefGoogle Scholar
  34. [34]
    G. Miu and T. Sjöstrand, W production in an improved parton shower approach, Phys. Lett. B 449 (1999) 313 [hep-ph/9812455] [SPIRES].ADSGoogle Scholar
  35. [35]
    E. Norrbin and T. Sjöstrand, QCD radiation off heavy particles, Nucl. Phys. B 603 (2001) 297 [hep-ph/0010012] [SPIRES].ADSCrossRefGoogle Scholar
  36. [36]
    R. Corke and T. Sjöstrand, Improved Parton Showers at Large Transverse Momenta, Eur. Phys. J. C 69 (2010) 1 [arXiv:1003.2384] [SPIRES].ADSCrossRefGoogle Scholar
  37. [37]
    M.H. Seymour, Matrix element corrections to parton shower algorithms, Comp. Phys. Commun. 90 (1995) 95 [hep-ph/9410414] [SPIRES].ADSCrossRefGoogle Scholar
  38. [38]
    G. Corcella and M.H. Seymour, Matrix element corrections to parton shower simulations of heavy quark decay, Phys. Lett. B 442 (1998) 417 [hep-ph/9809451] [SPIRES].ADSGoogle Scholar
  39. [39]
    G. Corcella and M.H. Seymour, Initial state radiation in simulations of vector boson production at hadron colliders, Nucl. Phys. B 565 (2000) 227 [hep-ph/9908388] [SPIRES].ADSCrossRefGoogle Scholar
  40. [40]
    CDF collaboration, D. Kar, Measurement of the Underlying Event at Tevatron, arXiv:0905.2323 [SPIRES].
  41. [41]
    R.D. Field, The Underlying Event in Hard Scattering Processes, recent talks available at http://www.phys.ufl.edu/∼rfield/cdf/rdf_talks.html.
  42. [42]
    CDF collaboration, R. Field and R.C. Group, PYTHIA tune A, HERWIG and JIMMY in Run 2at CDF, hep-ph/0510198 [SPIRES].
  43. [43]
    A. Buckley et al., Rivet user manual, arXiv:1003.0694 [SPIRES].
  44. [44]
    A. Buckley, H. Hoeth, H. Lacker, H. Schulz and J.E. von Seggern, Systematic event generator tuning for the LHC, Eur. Phys. J. C 65 (2010) 331 [arXiv:0907.2973] [SPIRES].ADSCrossRefGoogle Scholar
  45. [45]
    A. Buckley, H. Hoeth, H. Lacker, H. Schulz and E. von Seggern, Monte Carlo tuning and generator validation, arXiv:0906.0075 [SPIRES].
  46. [46]
    P.Z. Skands, Tuning Monte Carlo Generators: The Perugia Tunes, Phys. Rev. D 82 (2010) 074018 [arXiv:1005.3457] [SPIRES].ADSGoogle Scholar
  47. [47]
    A. Moraes, C. Buttar and I. Dawson, Prediction for minimum bias and the underlying event at LHC energies, Eur. Phys. J. C 50 (2007) 435 [SPIRES].ADSCrossRefGoogle Scholar
  48. [48]
    ATLAS collaboration, ATLAS Monte Carlo tunes for MC09, ATL-PHYS-PUB-2010-002 (2010).Google Scholar
  49. [49]
    ATLAS collaboration, Charged particle multiplicities in pp interactions at \( \sqrt {s} = 0.9 \) and 7 TeV inadiffractive limited phase space measured with the ATLAS detector at the LHC and a new pythia6 tune, ATLAS-CONF-2010-031 (2010).Google Scholar
  50. [50]
    ATLAS collaboration, Track-based underlying event measurements in pp collisions at \( \sqrt {s} = 900\;GeV \) and 7 TeV with the ATLAS Detector at the LHC, ATLAS-CONF-2010-029 (2010).Google Scholar
  51. [51]
    T. Sjöstrand, A Model for Initial State Parton Showers, Phys. Lett. B 157 (1985) 321 [SPIRES].ADSGoogle Scholar
  52. [52]
    R. Corke and T. Sjöstrand, Multiparton Interactions and Rescattering, JHEP 01 (2010) 035 [arXiv:0911.1909] [SPIRES].ADSCrossRefGoogle Scholar
  53. [53]
    G. ’t Hooft, A planar diagram theory for strong interactions, Nucl. Phys. B 72 (1974) 461 [SPIRES].MathSciNetADSGoogle Scholar
  54. [54]
    Y.L. Dokshitzer, D. Diakonov and S.I. Troian, Hard Processes in Quantum Chromodynamics, Phys. Rept. 58 (1980) 269 [SPIRES].ADSCrossRefGoogle Scholar
  55. [55]
    M. Ciafaloni, Coherence Effects in Initial Jets at Small Q 2 /s, Nucl. Phys. B 296 (1988) 49 [SPIRES].ADSCrossRefGoogle Scholar
  56. [56]
    S. Catani, F. Fiorani and G. Marchesini, Small x Behavior of Initial State Radiation in Perturbative QCD, Nucl. Phys. B 336 (1990) 18 [SPIRES].ADSCrossRefGoogle Scholar
  57. [57]
    B. Andersson, G. Gustafson and J. Samuelsson, The Linked dipole chain model for DIS, Nucl. Phys. B 467 (1996) 443 [SPIRES].ADSCrossRefGoogle Scholar
  58. [58]
    B.R. Webber, Monte Carlo Simulation of Hard Hadronic Processes, Ann. Rev. Nucl. Part. Sci. 36 (1986) 253 [SPIRES].ADSCrossRefGoogle Scholar
  59. [59]
    M. Bengtsson and P.M. Zerwas, Four Jet Events in e + e Annihilation: Testing the Three Gluon Vertex, Phys. Lett. B 208 (1988) 306 [SPIRES].ADSGoogle Scholar
  60. [60]
    S. Platzer and S. Gieseke, Coherent Parton Showers with Local Recoils, JHEP 01 (2011) 024 [arXiv:0909.5593] [SPIRES].ADSCrossRefGoogle Scholar
  61. [61]
    S. Hoeche, S. Schumann and F. Siegert, Hard photon production and matrix-element parton-shower merging, Phys. Rev. D 81 (2010) 034026 [arXiv:0912.3501] [SPIRES].ADSGoogle Scholar
  62. [62]
    R. Kleiss, From two to three jets in heavy boson decays: an algorithmic approach, Phys. Lett. B 180 (1986) 400 [SPIRES].ADSGoogle Scholar
  63. [63]
    G. Gustafson and A. Nilsson, Fractal structures and intermittency in perturbative QCD cascades, Nucl. Phys. B 355 (1991) 106 [SPIRES].ADSCrossRefGoogle Scholar
  64. [64]
    A. Donnachie and P.V. Landshoff, Total cross-sections, Phys. Lett. B 296 (1992) 227 [hep-ph/9209205] [SPIRES].ADSGoogle Scholar
  65. [65]
    G.A. Schuler and T. Sjöstrand, Hadronic diffractive cross-sections and the rise of the total cross-section, Phys. Rev. D 49 (1994) 2257 [SPIRES].ADSGoogle Scholar
  66. [66]
    G.A. Schuler and T. Sjöstrand, A scenario for high-energy gamma gamma interactions, Z. Phys. C 73 (1997) 677 [hep-ph/9605240] [SPIRES].Google Scholar
  67. [67]
    K.A. Goulianos, Renormalization of hadronic diffraction and the structure of the Pomeron, Phys. Lett. B 358 (1995) 379 [hep-ph/9502356] [SPIRES].ADSGoogle Scholar
  68. [68]
    K.A. Goulianos, Pomeron intercept and slope: A QCD connection, Phys. Rev. D 80 (2009) 111901 [SPIRES].ADSGoogle Scholar
  69. [69]
    ATLAS collaboration, Studies of Diffractive Enhanced Minimum Bias Events in ATLAS, ATLAS-CONF-2010-048 (2010).Google Scholar
  70. [70]
    CTEQ collaboration, H.L. Lai et al., Global QCD analysis of parton structure of the nucleon: CTEQ5 parton distributions, Eur. Phys. J. C 12 (2000) 375 [hep-ph/9903282] [SPIRES].ADSCrossRefGoogle Scholar
  71. [71]
    M.R. Whalley, D. Bourilkov and R.C. Group, The Les Houches Accord PDFs (LHAPDF) and Lhaglue, hep-ph/0508110 [SPIRES].
  72. [72]
    T. Kasemets and T. Sjöstrand, A Comparison of new MC-adapted Parton Densities, Eur. Phys. J. C 69 (2010) 19 [arXiv:1007.0897] [SPIRES].ADSCrossRefGoogle Scholar
  73. [73]
    J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [SPIRES].ADSCrossRefGoogle Scholar
  74. [74]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [SPIRES].ADSCrossRefGoogle Scholar
  75. [75]
    H.-L. Lai et al., Parton Distributions for Event Generators, JHEP 04 (2010) 035 [arXiv:0910.4183] [SPIRES].ADSCrossRefGoogle Scholar
  76. [76]
    A. Sherstnev and R.S. Thorne, Parton Distributions for LO Generators, Eur. Phys. J. C 55 (2008) 553 [arXiv:0711.2473] [SPIRES].ADSCrossRefGoogle Scholar
  77. [77]
    M. Sandhoff and P. Skands, Colour annealing - a toy model of colour reconnections, Presented at Les Houches Workshop on Physics at TeV Colliders, Les Houches, France, 2–20 May 2005.Google Scholar
  78. [78]
    P.Z. Skands and D. Wicke, Non-perturbative QCD effects and the top mass at the Tevatron, Eur. Phys. J. C 52 (2007) 133 [hep-ph/0703081] [SPIRES].ADSCrossRefGoogle Scholar
  79. [79]
    S. Navin, Diffraction in PYTHIA, arXiv:1005.3894 [SPIRES].
  80. [80]
    G. Ingelman and P.E. Schlein, Jet Structure in High Mass Diffractive Scattering, Phys. Lett. B 152 (1985) 256 [SPIRES].
  81. [81]
    W. Slominski and A. Valkarova, Diffractive final states and factorisation at HERA, DESY-PROC-2009-02.Google Scholar
  82. [82]
    CDF collaboration, A.A. Affolder et al., Diffractive dijets with a leading antiproton in \( \bar{p}p \) collisions at \( \sqrt {s} = 1800\;GeV \), Phys. Rev. Lett. 84 (2000) 5043 [SPIRES].ADSCrossRefGoogle Scholar
  83. [83]
    B. Andersson, G. Gustafson, G. Ingelman and T. Sjöstrand, Parton Fragmentation and String Dynamics, Phys. Rept. 97 (1983) 31 [SPIRES].ADSCrossRefGoogle Scholar
  84. [84]
    STAR collaboration, B.I. Abelev et al., Enhanced strange baryon production in Au+Au collisions compared to p+p at \( \sqrt {s} = 200\;GeV \), Phys. Rev. C 77 (2008) 044908 [arXiv:0705.2511] [SPIRES].ADSGoogle Scholar
  85. [85]
    F.A. Berends, R. Kleiss, P. De Causmaecker, R. Gastmans and T.T. Wu, Single Bremsstrahlung Processes in Gauge Theories, Phys. Lett. B 103 (1981) 124 [SPIRES].ADSGoogle Scholar
  86. [86]
    M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [SPIRES].ADSCrossRefGoogle Scholar
  87. [87]
    M.L. Mangano, M. Moretti and R. Pittau, Multijet matrix elements and shower evolution in hadronic collisions: \( Wb\bar{b} + n \) jets as a case study, Nucl. Phys. B 632 (2002) 343 [hep-ph/0108069] [SPIRES].ADSCrossRefGoogle Scholar
  88. [88]
    F. Caravaglios, M.L. Mangano, M. Moretti and R. Pittau, A new approach to multi-jet calculations in hadron collisions, Nucl. Phys. B 539 (1999) 215 [hep-ph/9807570] [SPIRES].ADSCrossRefGoogle Scholar
  89. [89]
    J. Alwall et al., MadGraph/MadEvent v4: The New Web Generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [SPIRES].ADSCrossRefGoogle Scholar
  90. [90]
    CDF collaboration, F. Abe et al., Evidence for color coherence in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.8\;TeV \), Phys. Rev. D 50 (1994) 5562 [SPIRES].ADSGoogle Scholar
  91. [91]
    D0 collaboration, B. Abbott et al., Color coherent radiation in multijet events from \( p\bar{p} \) collisions at \( \sqrt {s} = 1.8\;TeV \), Phys. Lett. B 414 (1997) 419 [hep-ex/9706012] [SPIRES].ADSGoogle Scholar
  92. [92]
    A. Buckley et al., General-purpose event generators for LHC physics, arXiv:1101.2599 [SPIRES].
  93. [93]
    CDF collaboration, A.A. Affolder et al., The transverse momentum and total cross section of e + e pairs in the Z boson region from \( p\bar{p} \) collisions at \( \sqrt {s} = 1.8\;TeV \), Phys. Rev. Lett. 84 (2000) 845 [hep-ex/0001021] [SPIRES].ADSCrossRefGoogle Scholar
  94. [94]
    CDF collaboration, A.A. Affolder et al., Charged jet evolution and the underlying event in \( p\bar{p} \) collisions at 1.8 TeV, Phys. Rev. D 65 (2002) 092002 [SPIRES].ADSGoogle Scholar
  95. [95]
    CDF collaboration, D.E. Acosta et al., Soft and hard interactions in \( p\bar{p} \) collisions at \( \sqrt {s} = 1800{ - }GeV \) and 630-GeV, Phys. Rev. D 65 (2002) 072005 [SPIRES].ADSGoogle Scholar
  96. [96]
    D0 collaboration, V.M. Abazov et al., Measurement of dijet azimuthal decorrelations at central rapidities in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96\;TeV \), Phys. Rev. Lett. 94 (2005) 221801 [hep-ex/0409040] [SPIRES].ADSCrossRefGoogle Scholar
  97. [97]
    CDF collaboration, R. Field, The Underlying Event and Comparisons with MC, First International Workshop on Multiple Partonic Interactions at the LHC, 2008.Google Scholar
  98. [98]
    CDF collaboration, D. Kar and R. Field, Using Drell-Yan to Probe the Underlying Event in Run 2at CDF, CDF Note 9351 (2008).Google Scholar
  99. [99]
    CDF collaboration, T. Aaltonen et al., Measurement of Particle Production and Inclusive Differential Cross sections in \( p\bar{p} \) Collisions at \( \sqrt {s} = 1.96\;TeV \), Phys. Rev. D 79 (2009) 112005 [arXiv:0904.1098] [SPIRES].ADSGoogle Scholar
  100. [100]
    ALICE collaboration, K. Aamodt et al., Charged-particle multiplicity measurement in proton-proton collisions at \( \sqrt {s} = 0.9 \) and 2.36 TeV with ALICE at LHC, Eur. Phys. J. C 68 (2010) 89 [arXiv:1004.3034] [SPIRES].ADSCrossRefGoogle Scholar
  101. [101]
    ALICE collaboration, K. Aamodt et al., Charged-particle multiplicity measurement in proton-proton collisions at \( \sqrt {s} = 7\;TeV \) with ALICE at LHC, Eur. Phys. J. C 68 (2010) 345 [arXiv:1004.3514] [SPIRES].ADSCrossRefGoogle Scholar
  102. [102]
    ATLAS collaboration, G. Aad et al., Charged-particle multiplicities in pp interactions at \( \sqrt {s} = 900\;GeV \) measured with the ATLAS detector at the LHC, Phys. Lett. B 688 (2010) 21 [arXiv:1003.3124] [SPIRES].ADSGoogle Scholar
  103. [103]
    ATLAS collaboration, Charged particle multiplicities in pp interactions at \( \sqrt {s} = 7\;TeV \) measured with the ATLAS detector at the LHC, ATLAS-CONF-2010-024.Google Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Theoretical High Energy Physics, Department of Astronomy and Theoretical PhysicsLund UniversityLundSweden

Personalised recommendations