Advertisement

Writing CFT correlation functions as AdS scattering amplitudes

  • Joao PenedonesEmail author
Article

Abstract

We explore the Mellin representation of conformal correlation functions recently proposed by Mack. Examples in the AdS/CFT context reinforce the analogy between Mellin amplitudes and scattering amplitudes. We conjecture a simple formula relating the bulk scattering amplitudes to the asymptotic behavior of Mellin amplitudes and show that previous results on the flat space limit of AdS follow from our new formula. We find that the Mellin amplitudes are particularly useful in the case of conformal gauge theories in the planar limit. In this case, the four point Mellin amplitudes are meromorphic functions whose poles and their residues are entirely determined by two and three point functions of single-trace operators. This makes the Mellin amplitudes the ideal objects to attempt the conformal bootstrap program in higher dimensions.

Keywords

AdS-CFT Correspondence Gauge-gravity correspondence 

References

  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].MathSciNetADSzbMATHGoogle Scholar
  2. [2]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].MathSciNetADSGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].MathSciNetzbMATHGoogle Scholar
  4. [4]
    J. Polchinski, S-matrices from AdS spacetime, hep-th/9901076 [SPIRES].
  5. [5]
    L. Susskind, Holography in the flat space limit, hep-th/9901079 [SPIRES].
  6. [6]
    S.B. Giddings, The boundary S-matrix and the AdS to CFT dictionary, Phys. Rev. Lett. 83 (1999) 2707 [hep-th/9903048] [SPIRES].MathSciNetADSCrossRefzbMATHGoogle Scholar
  7. [7]
    S.B. Giddings, Flat-space scattering and bulk locality in the AdS/CFT correspondence, Phys. Rev. D 61 (2000) 106008 [hep-th/9907129] [SPIRES].MathSciNetADSGoogle Scholar
  8. [8]
    G. Mack, D-independent representation of conformal field theories in D dimensions via transformation to auxiliary dual resonance models. Scalar amplitudes, arXiv:0907.2407 [SPIRES].
  9. [9]
    G. Mack, D-dimensional conformal field theories with anomalous dimensions as dual resonance models, arXiv:0909.1024 [SPIRES].
  10. [10]
    K. Symanzik, On Calculations in conformal invariant field theories, Lett. Nuovo Cim. 3 (1972) 734 [SPIRES].CrossRefGoogle Scholar
  11. [11]
    V.K. Dobrev, V.B. Petkova, S.G. Petrova and I.T. Todorov, Dynamical derivation of vacuum operator product expansion in euclidean conformal quantum field theory, Phys. Rev. D 13 (1976) 887 [SPIRES].ADSGoogle Scholar
  12. [12]
    H. Liu, Scattering in Anti-de Sitter space and operator product expansion, Phys. Rev. D 60 (1999) 106005 [hep-th/9811152] [SPIRES].ADSGoogle Scholar
  13. [13]
    L. Cornalba, M.S. Costa, J. Penedones and R. Schiappa, Eikonal approximation in AdS/CFT: conformal partial waves and finite N four-point functions, Nucl. Phys. B 767 (2007) 327 [hep-th/0611123] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from conformal field theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    E. D’Hoker, D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Graviton exchange and complete 4-point functions in the AdS/CFT correspondence, Nucl. Phys. B 562 (1999) 353 [hep-th/9903196] [SPIRES].MathSciNetCrossRefGoogle Scholar
  16. [16]
    M. Gary, S.B. Giddings and J. Penedones, Local bulk S-matrix elements and CFT singularities, Phys. Rev. D 80 (2009) 085005 [arXiv:0903.4437] [SPIRES].MathSciNetADSGoogle Scholar
  17. [17]
    T. Okuda and J. Penedones, String scattering in flat space and a scaling limit of Yang-Mills correlators, arXiv:1002.2641 [SPIRES].
  18. [18]
    A.L. Fitzpatrick, E. Katz, D. Poland and D. Simmons-Duffin, Effective conformal theory and the flat-space limit of AdS, arXiv:1007.2412 [SPIRES].
  19. [19]
    P.A.M. Dirac, Wave equations in conformal space, Ann. Math. 37 (1936) 429 [SPIRES].MathSciNetCrossRefGoogle Scholar
  20. [20]
    J. Penedones, High energy scattering in the AdS/CFT correspondence, arXiv:0712.0802 [SPIRES].
  21. [21]
    I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    E. D’Hoker, D.Z. Freedman and L. Rastelli, AdS/CFT 4-point functions: How to succeed at z-integrals without really trying, Nucl. Phys. B 562 (1999) 395 [hep-th/9905049] [SPIRES].MathSciNetCrossRefGoogle Scholar
  23. [23]
    B.M. Barker, S.N. Gupta and R.D. Haracz, One-graviton exchange interaction of elementary particles, Phys. Rev. 149 (1966) 1027 [SPIRES].ADSCrossRefGoogle Scholar
  24. [24]
    S.R. Huggins and D.J. Toms, One graviton exchange interaction of nonminimally coupled scalar fields, Class. Quant. Grav. 4 (1987) 1509 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    C.G. Callan Jr. and F. Wilczek, Infrared behavior at negative curvature, Nucl. Phys. B 340 (1990) 366 [SPIRES].ADSCrossRefGoogle Scholar
  26. [26]
    I. Heemskerk and J. Sully, More holography from conformal field theory, JHEP 09 (2010) 099 [arXiv:1006.0976] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    L. Cornalba, M.S. Costa and J. Penedones, Eikonal approximation in AdS/CFT: resumming the gravitational loop expansion, JHEP 09 (2007) 037 [arXiv:0707.0120] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    L. Cornalba, Eikonal methods in AdS/CFT: Regge theory and multi-reggeon exchange, arXiv:0710.5480 [SPIRES].
  29. [29]
    L. Cornalba, M.S. Costa and J. Penedones, Eikonal methods in AdS/CFT: BFKL pomeron at weak coupling, JHEP 06 (2008) 048 [arXiv:0801.3002] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Correlation functions in the CFT(d)/AdS(d + 1) correspondence, Nucl. Phys. B 546 (1999) 96 [hep-th/9804058] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    P. Di Francesco, P. Mathieu and D. Senechal, Conformal field theory, Springer, U.S.A. (1997), p. 890.CrossRefzbMATHGoogle Scholar
  32. [32]
    A. Mikhailov, Notes on higher spin symmetries, hep-th/0201019 [SPIRES].

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Perimeter Institute for Theoretical PhysicsWaterlooCanada
  2. 2.Kavli Institute for Theoretical PhysicsSanta BarbaraU.S.A.
  3. 3.Centro de Física do PortoPortoPortugal

Personalised recommendations