An infinite-dimensional family of black-hole microstate geometries

  • Iosif Bena
  • Nikolay Bobev
  • Stefano Giusto
  • Clément Ruef
  • Nicholas P. Warner
Open Access


We construct the first explicit, smooth, horizonless black-hole microstate geometry whose moduli space is described by an arbitrary function of one variable and is thus infinite-dimensional. This is achieved by constructing the scalar Green function on a simple \( {\text{D}}6{ - }\overline {{\text{D}}6} \) background, and using this Green function to obtain the fully back-reacted solution for a supertube with varying charge density in this background. We show that this supertube can store parametrically more entropy than in flat space, confirming the entropy enhancement mechanism that was predicted using brane probes. We also show that all the local properties of the fully back-reacted solution can, in fact, be obtained using the DBI action of an appropriate brane probe. In particular, the supergravity and the DBI analysis yield identical functional bubble equations that govern the relative locations of the centers. This indicates that there is a non-renormalization theorem that protects these functional equations as one moves in moduli space. Our construction creates configurations that are beyond the scope of recent arguments that appear to put strong limits on the entropy that can be found in smooth supergravity solutions.


Black Holes in String Theory Models of Quantum Gravity D-branes 


  1. [1]
    S.D. Mathur, The fuzzball proposal for black holes: An elementary review, Fortsch. Phys. 53 (2005) 793 [hep-th/0502050] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. [2]
    I. Bena and N.P. Warner, Black holes, black rings and their microstates, Lect. Notes Phys. 755 (2008) 1 [hep-th/0701216] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    K. Skenderis and M. Taylor, The fuzzball proposal for black holes, Phys. Rept. 467 (2008) 117 [arXiv:0804.0552] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    V. Balasubramanian, J. de Boer, S. El-Showk and I. Messamah, Black Holes as Effective Geometries, Class. Quant. Grav. 25 (2008) 214004 [arXiv:0811.0263] [SPIRES].ADSCrossRefGoogle Scholar
  5. [5]
    B.D. Chowdhury and A. Virmani, Modave Lectures on Fuzzballs and Emission from the D1 − D5 System, arXiv:1001.1444 [SPIRES].
  6. [6]
    I. Bena and N.P. Warner, Bubbling supertubes and foaming black holes, Phys. Rev. D 74 (2006) 066001 [hep-th/0505166] [SPIRES].MathSciNetADSGoogle Scholar
  7. [7]
    P. Berglund, E.G. Gimon and T.S. Levi, Supergravity microstates for BPS black holes and black rings, JHEP 06 (2006) 007 [hep-th/0505167] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    I. Bena, C.-W. Wang and N.P. Warner, The foaming three-charge black hole, Phys. Rev. D 75 (2007) 124026 [hep-th/0604110] [SPIRES].MathSciNetADSGoogle Scholar
  9. [9]
    I. Bena, C.-W. Wang and N.P. Warner, Plumbing the Abyss: Black Ring Microstates, JHEP 07 (2008) 019 [arXiv:0706.3786] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    V. Balasubramanian, E.G. Gimon and T.S. Levi, Four Dimensional Black Hole Microstates: From D-branes to Spacetime Foam, JHEP 01 (2008) 056 [hep-th/0606118] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    J. de Boer, S. El-Showk, I. Messamah and D. Van den Bleeken, Quantizing N = 2 Multicenter Solutions, JHEP 05 (2009) 002 [arXiv:0807.4556] [SPIRES].CrossRefGoogle Scholar
  12. [12]
    B. Bates and F. Denef, Exact solutions for supersymmetric stationary black hole composites, hep-th/0304094 [SPIRES].
  13. [13]
    F. Denef, Quantum quivers and Hall/hole halos, JHEP 10 (2002) 023 [hep-th/0206072] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    J. de Boer, S. El-Showk, I. Messamah and D. Van den Bleeken, A bound on the entropy of supergravity?, JHEP 02 (2010) 062 [arXiv:0906.0011] [SPIRES].CrossRefGoogle Scholar
  15. [15]
    O. Lunin and S.D. Mathur, Metric of the multiply wound rotating string, Nucl. Phys. B 610 (2001) 49 [hep-th/0105136] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    J.M. Maldacena and L. Maoz, De-singularization by rotation, JHEP 12 (2002) 055 [hep-th/0012025] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    O. Lunin, J.M. Maldacena and L. Maoz, Gravity solutions for the D1 − D5 system with angular momentum, hep-th/0212210 [SPIRES].
  18. [18]
    D. Mateos and P.K. Townsend, Supertubes, Phys. Rev. Lett. 87 (2001) 011602 [hep-th/0103030] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    I. Bena, N. Bobev, C. Ruef and N.P. Warner, Supertubes in Bubbling Backgrounds: Born-Infeld Meets Supergravity, JHEP 07 (2009) 106 [arXiv:0812.2942] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    J. Ford, S. Giusto and A. Saxena, A class of BPS time-dependent 3-charge microstates from spectral flow, Nucl. Phys. B 790 (2008) 258 [hep-th/0612227] [SPIRES].MathSciNetADSGoogle Scholar
  21. [21]
    I. Bena, N. Bobev and N.P. Warner, Spectral Flow and the Spectrum of Multi-Center Solutions, Phys. Rev. D 77 (2008) 125025 [arXiv:0803.1203] [SPIRES].MathSciNetADSGoogle Scholar
  22. [22]
    D. Gaiotto, A. Strominger and X. Yin, Superconformal black hole quantum mechanics, JHEP 11 (2005) 017 [hep-th/0412322] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    F. Denef, D. Gaiotto, A. Strominger, D. Van den Bleeken and X. Yin, Black hole deconstruction, hep-th/0703252 [SPIRES].
  24. [24]
    E.G. Gimon and T.S. Levi, Black Ring Deconstruction, JHEP 04 (2008) 098 [arXiv:0706.3394] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    I. Bena, N. Bobev, C. Ruef and N.P. Warner, Entropy Enhancement and Black Hole Microstates, Phys. Rev. Lett. 105 (2010) 231301 [arXiv:0804.4487] [SPIRES].ADSCrossRefGoogle Scholar
  26. [26]
    J. de Boer and M. Shigemori, Exotic branes and non-geometric backgrounds, Phys. Rev. Lett. 104 (2010) 251603 [arXiv:1004.2521] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    C. Crnkovic and E. Witten, Covariant Description of Canonical Formalism in Geometric Theories, Print-86-1309 (Princeton).Google Scholar
  28. [28]
    L. Grant, L. Maoz, J. Marsano, K. Papadodimas and V.S. Rychkov, Minisuperspace quantization of ’bubbling AdS’ and free fermion droplets, JHEP 08 (2005) 025 [hep-th/0505079] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    V.S. Rychkov, D1 − D5 black hole microstate counting from supergravity, JHEP 01 (2006) 063 [hep-th/0512053] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    R. Emparan, D. Mateos and P.K. Townsend, Supergravity supertubes, JHEP 07 (2001) 011 [hep-th/0106012] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    I. Bena and N.P. Warner, One ring to rule them all … and in the darkness bind them?, Adv. Theor. Math. Phys. 9 (2005) 667 [hep-th/0408106] [SPIRES].MathSciNetzbMATHGoogle Scholar
  32. [32]
    D.N. Page, Green’s functions for gravitational multi-instantons, Phys. Lett. B 85 (1979) 369 [SPIRES].MathSciNetADSGoogle Scholar
  33. [33]
    S. Giusto and S.D. Mathur, Geometry of D1-D5-P bound states, Nucl. Phys. B 729 (2005) 203 [hep-th/0409067] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    A. Saxena, G. Potvin, S. Giusto and A.W. Peet, Smooth geometries with four charges in four dimensions, JHEP 04 (2006) 010 [hep-th/0509214] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    B.C. Palmer and D. Marolf, Counting supertubes, JHEP 06 (2004) 028 [hep-th/0403025] [SPIRES].CrossRefGoogle Scholar
  36. [36]
    D. Bak, Y. Hyakutake, S. Kim and N. Ohta, A geometric look on the microstates of supertubes, Nucl. Phys. B 712 (2005) 115 [hep-th/0407253] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    J.B. Gutowski and H.S. Reall, General supersymmetric AdS 5 black holes, JHEP 04 (2004) 048 [hep-th/0401129] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    J.P. Gauntlett, J.B. Gutowski, C.M. Hull, S. Pakis and H.S. Reall, All supersymmetric solutions of minimal supergravity in five dimensions, Class. Quant. Grav. 20 (2003) 4587 [hep-th/0209114] [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  39. [39]
    J.P. Gauntlett and J.B. Gutowski, General concentric black rings, Phys. Rev. D 71 (2005) 045002 [hep-th/0408122] [SPIRES].MathSciNetADSGoogle Scholar
  40. [40]
    G.W. Gibbons and P.J. Ruback, The Hidden Symmetries of Multicenter Metrics, Commun. Math. Phys. 115 (1988) 267 [SPIRES].MathSciNetADSzbMATHCrossRefGoogle Scholar
  41. [41]
    I. Bena, P. Kraus and N.P. Warner, Black rings in Taub-NUT, Phys. Rev. D 72 (2005) 084019 [hep-th/0504142] [SPIRES].MathSciNetADSGoogle Scholar
  42. [42]
    J. de Boer, F. Denef, S. El-Showk, I. Messamah and D. Van den Bleeken, Black hole bound states in AdS 3 × S 2, JHEP 11 (2008) 050 [arXiv:0802.2257] [SPIRES].CrossRefGoogle Scholar
  43. [43]
    M.K. Prasad, Equivalence of Eguchi-Hanson metric to two-center Gibbons-Hawking metric, Phys. Lett. B 83 (1979) 310 [SPIRES].ADSGoogle Scholar
  44. [44]
    H. Dorn, M. Salizzoni and C. Sieg, On the propagator of a scalar field on AdS × S and on the BMN plane wave, JHEP 02 (2005) 047 [hep-th/0307229] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    I. Bena and P. Kraus, Three Charge Supertubes and Black Hole Hair, Phys. Rev. D 70 (2004) 046003 [hep-th/0402144] [SPIRES].MathSciNetADSGoogle Scholar
  46. [46]
    M. Taylor, General 2 charge geometries, JHEP 03 (2006) 009 [hep-th/0507223] [SPIRES].ADSCrossRefGoogle Scholar
  47. [47]
    I. Kanitscheider, K. Skenderis and M. Taylor, Fuzzballs with internal excitations, JHEP 06 (2007) 056 [arXiv:0704.0690] [SPIRES].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Iosif Bena
    • 1
  • Nikolay Bobev
    • 2
  • Stefano Giusto
    • 3
  • Clément Ruef
    • 1
  • Nicholas P. Warner
    • 2
  1. 1.Institut de Physique Théorique, CEA Saclay, CNRS-URA 2306Gif sur YvetteFrance
  2. 2.Department of Physics and AstronomyUniversity of Southern CaliforniaLos AngelesU.S.A.
  3. 3.Dipartimento di FisicaUniversità di GenovaGenoaItaly

Personalised recommendations