An infinite-dimensional family of black-hole microstate geometries

  • Iosif Bena
  • Nikolay Bobev
  • Stefano Giusto
  • Clément Ruef
  • Nicholas P. Warner
Open Access
Article

DOI: 10.1007/JHEP03(2011)022

Cite this article as:
Bena, I., Bobev, N., Giusto, S. et al. J. High Energ. Phys. (2011) 2011: 22. doi:10.1007/JHEP03(2011)022

Abstract

We construct the first explicit, smooth, horizonless black-hole microstate geometry whose moduli space is described by an arbitrary function of one variable and is thus infinite-dimensional. This is achieved by constructing the scalar Green function on a simple \( {\text{D}}6{ - }\overline {{\text{D}}6} \) background, and using this Green function to obtain the fully back-reacted solution for a supertube with varying charge density in this background. We show that this supertube can store parametrically more entropy than in flat space, confirming the entropy enhancement mechanism that was predicted using brane probes. We also show that all the local properties of the fully back-reacted solution can, in fact, be obtained using the DBI action of an appropriate brane probe. In particular, the supergravity and the DBI analysis yield identical functional bubble equations that govern the relative locations of the centers. This indicates that there is a non-renormalization theorem that protects these functional equations as one moves in moduli space. Our construction creates configurations that are beyond the scope of recent arguments that appear to put strong limits on the entropy that can be found in smooth supergravity solutions.

Keywords

Black Holes in String Theory Models of Quantum Gravity D-branes 
Download to read the full article text

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Iosif Bena
    • 1
  • Nikolay Bobev
    • 2
  • Stefano Giusto
    • 3
  • Clément Ruef
    • 1
  • Nicholas P. Warner
    • 2
  1. 1.Institut de Physique Théorique, CEA Saclay, CNRS-URA 2306Gif sur YvetteFrance
  2. 2.Department of Physics and AstronomyUniversity of Southern CaliforniaLos AngelesU.S.A.
  3. 3.Dipartimento di FisicaUniversità di GenovaGenoaItaly

Personalised recommendations