Advertisement

Comments on flipped SU(5) (and F-theory)

  • E. Kuflik
  • J. Marsano
Article

Abstract

We study the impact of nonrenormalizable operators in flipped SU(5) that can generate a large μ term, R-parity violation, and rapid proton decay. While our motivation is to determine whether F-theory can naturally realize flipped SU(5), this analysis is general and leads to a characterization of symmetries capable of controlling such operators and should be independent of F-theory. We then discuss some specific implications for F-theory model building, where a significant μ problem is unavoidable. Finally, we mention previously noted difficulties associated to engineering GUT-Higgs fields in F-theory, suggest a direct engineering of SU(5) × U(1) χ as an alternative, and present a sample construction of this type.

Keywords

F-Theory GUT 

References

  1. [1]
    S.M. Barr, A New Symmetry Breaking Pattern for SO(10) and Proton Decay, Phys. Lett. B 112 (1982) 219 [SPIRES].MathSciNetADSGoogle Scholar
  2. [2]
    J.P. Derendinger, J.E. Kim and D.V. Nanopoulos, Anti-SU(5), Phys. Lett. B 139 (1984) 170 [SPIRES].ADSGoogle Scholar
  3. [3]
    I. Antoniadis, J.R. Ellis, J.S. Hagelin and D.V. Nanopoulos, Supersymmetric Flipped SU(5) Revitalized, Phys. Lett. B 194 (1987) 231 [SPIRES].ADSGoogle Scholar
  4. [4]
    J. Jiang, T. Li and D.V. Nanopoulos, Testable Flipped SU(5) × U(1)X Models, Nucl. Phys. B 772 (2007) 49 [hep-ph/0610054] [SPIRES].ADSCrossRefGoogle Scholar
  5. [5]
    C.M. Chen, G.V. Kraniotis, V.E. Mayes, D.V. Nanopoulos and J.W. Walker, A supersymmetric flipped SU(5) intersecting brane world, Phys. Lett. B 611 (2005) 156 [hep-th/0501182] [SPIRES].MathSciNetADSGoogle Scholar
  6. [6]
    C.M. Chen, G.V. Kraniotis, V.E. Mayes, D.V. Nanopoulos and J.W. Walker, A k-theory anomaly free supersymmetric flipped SU(5) model from intersecting branes, Phys. Lett. B 625 (2005) 96 [hep-th/0507232] [SPIRES].MathSciNetADSGoogle Scholar
  7. [7]
    C.-M. Chen, V.E. Mayes and D.V. Nanopoulos, Flipped SU(5) from D-branes with type IIB fluxes, Phys. Lett. B 633 (2006) 618 [hep-th/0511135] [SPIRES].MathSciNetADSGoogle Scholar
  8. [8]
    C.-M. Chen, T. Li and D.V. Nanopoulos, Flipped and unflipped SU(5) as type IIA flux vacua, Nucl. Phys. B 751 (2006) 260 [hep-th/0604107] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    M. Cvetič and P. Langacker, New grand unified models with intersecting D6-branes, neutrino masses and flipped SU(5), Nucl. Phys. B 776 (2007) 118 [hep-th/0607238] [SPIRES].ADSCrossRefGoogle Scholar
  10. [10]
    R. Blumenhagen, M. Cvetič, D. Lüst, R. Richter, 2 and T. Weigand, Non-perturbative Yukawa Couplings from String Instantons, Phys. Rev. Lett. 100 (2008) 061602 [arXiv:0707.1871] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    J. Jiang, T. Li, D.V. Nanopoulos and D. Xie, Flipped SU(5) × U(1)X Models from F-theory, Nucl. Phys. B 830 (2010) 195 [arXiv:0905.3394] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    T. Li, SU(5) and SO(10) Models from F-theory with Natural Yukawa Couplings, Phys. Rev. D 81 (2010) 065018 [arXiv:0905.4563] [SPIRES].ADSGoogle Scholar
  13. [13]
    C. Beasley, J.J. Heckman and C. Vafa, GUTs and Exceptional Branes in F-theory - II: Experimental Predictions, JHEP 01 (2009) 059 [arXiv:0806.0102] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    T. Li, D.V. Nanopoulos and J.W. Walker, Fast Proton Decay, arXiv:0910.0860 [SPIRES].
  15. [15]
    T. Li, J.A. Maxin and D.V. Nanopoulos, F-Theory Grand Unification at the Colliders, arXiv:1002.1031 [SPIRES].
  16. [16]
    T. Li, D.V. Nanopoulos and J.W. Walker, Elements of F-ast Proton Decay, Nucl. Phys. B 846 (2011) 43 [arXiv:1003.2570] [SPIRES].ADSCrossRefGoogle Scholar
  17. [17]
    T. Li, J.A. Maxin, D.V. Nanopoulos and J.W. Walker, Dark Matter, Proton Decay and Other Phenomenological Constraints in \( \mathcal{F} - SU(5) \), arXiv:1003.4186 [SPIRES].
  18. [18]
    T. Li, J.A. Maxin, D.V. Nanopoulos and J.W. Walker, The Golden Point of No-Scale and No-Parameter \( \mathcal{F} - SU(5) \), arXiv:1007.5100 [SPIRES].
  19. [19]
    S.F. King, G.K. Leontaris and G.G. Ross, Family symmetries in F-theory GUTs, Nucl. Phys. B 838 (2010) 119 [arXiv:1005.1025] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    C.-M. Chen and Y.-C. Chung, Flipped SU(5) GUTs from E 8 Singularity in F-theory, arXiv:1005.5728 [SPIRES].
  21. [21]
    C.-M. Chen, J. Knapp, M. Kreuzer and C. Mayrhofer, Global SO(10) F-theory GUTs, JHEP 10 (2010) 057 [arXiv:1005.5735] [SPIRES].MathSciNetADSGoogle Scholar
  22. [22]
    Y.-C. Chung, On Global Flipped SU(5) GUTs in F-theory, arXiv:1008.2506 [SPIRES].
  23. [23]
    R. Donagi and M. Wijnholt, Model Building with F-theory, arXiv:0802.2969 [SPIRES].
  24. [24]
    C. Beasley, J.J. Heckman and C. Vafa, GUTs and Exceptional Branes in F-theory - I, JHEP 01 (2009) 058 [arXiv:0802.3391] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    R. Donagi and M. Wijnholt, Breaking GUT Groups in F-theory, arXiv:0808.2223 [SPIRES].
  26. [26]
    J.P. Conlon, Gauge Threshold Corrections for Local String Models, JHEP 04 (2009) 059 [arXiv:0901.4350] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    J.P. Conlon and E. Palti, Gauge Threshold Corrections for Local Orientifolds, JHEP 09 (2009) 019 [arXiv:0906.1920] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    J.P. Conlon and E. Palti, On Gauge Threshold Corrections for Local IIB/F-theory GUTs, Phys. Rev. D 80 (2009) 106004 [arXiv:0907.1362] [SPIRES].ADSGoogle Scholar
  29. [29]
    R. Blumenhagen, Gauge Coupling Unification in F-theory Grand Unified Theories, Phys. Rev. Lett. 102 (2009) 071601 [arXiv:0812.0248] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    J.J. Heckman and C. Vafa, Flavor Hierarchy From F-theory, Nucl. Phys. B 837 (2010) 137 [arXiv:0811.2417] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    V. Bouchard, J.J. Heckman, J. Seo and C. Vafa, F-theory and Neutrinos: Kaluza-Klein Dilution of Flavor Hierarchy, JHEP 01 (2010) 061 [arXiv:0904.1419] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    S. Cecotti, M.C.N. Cheng, J.J. Heckman and C. Vafa, Yukawa Couplings in F-theory and Non-Commutative Geometry, arXiv:0910.0477 [SPIRES].
  33. [33]
    J. Marsano, N. Saulina and S. Schäfer-Nameki, Monodromies, Fluxes and Compact Three-Generation F-theory GUTs, JHEP 08 (2009) 046 [arXiv:0906.4672] [SPIRES].ADSCrossRefGoogle Scholar
  34. [34]
    J. Marsano, N. Saulina and S. Schäfer-Nameki, Compact F-theory GUTs with U(1)PQ, JHEP 04 (2010) 095 [arXiv:0912.0272] [SPIRES].ADSCrossRefGoogle Scholar
  35. [35]
    A. Font and L.E. Ibáñez, Yukawa Structure from U(1) Fluxes in F-theory Grand Unification, JHEP 02 (2009) 016 [arXiv:0811.2157] [SPIRES].ADSCrossRefGoogle Scholar
  36. [36]
    E. Dudas and E. Palti, Froggatt-Nielsen models from E8 in F-theory GUTs, JHEP 01 (2010) 127 [arXiv:0912.0853] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    C.-S. Huang et al., Embedding flipped SU(5) into SO(10), JHEP 10 (2006) 035 [hep-ph/0606087] [SPIRES].ADSCrossRefGoogle Scholar
  38. [38]
    J.L. Lopez and D.V. Nanopoulos, Decisive role of nonrenormalizable terms in the flipped string, Phys. Lett. B 251 (1990) 73 [SPIRES].MathSciNetADSGoogle Scholar
  39. [39]
    A. Dedes, C. Panagiotakopoulos and K. Tamvakis, Radiative GUT symmetry breaking in a R-symmetric flipped SU(5) model, Phys. Rev. D 57 (1998) 5493 [hep-ph/9710563] [SPIRES].ADSGoogle Scholar
  40. [40]
    M.U. Rehman, Q. Shafi and J.R. Wickman, Minimal Supersymmetric Hybrid Inflation, Flipped SU(5) and Proton Decay, Phys. Lett. B 688 (2010) 75 [arXiv:0912.4737] [SPIRES].ADSGoogle Scholar
  41. [41]
    S. Raby, Proton decay, hep-ph/0211024 [SPIRES].
  42. [42]
    H. Hayashi, T. Kawano, Y. Tsuchiya and T. Watari, Flavor Structure in F-theory Compactifications, JHEP 08 (2010) 036 [arXiv:0910.2762] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    T.W. Grimm and T. Weigand, On Abelian Gauge Symmetries and Proton Decay in Global F-theory GUTs, Phys. Rev. D 82 (2010) 086009 [arXiv:1006.0226] [SPIRES].ADSGoogle Scholar
  44. [44]
    J. Marsano, N. Saulina and S. Schäfer-Nameki, A Note on G-fluxes for F-theory Model Building, JHEP 11 (2010) 088 [arXiv:1006.0483] [SPIRES].ADSCrossRefGoogle Scholar
  45. [45]
    J. Marsano, N. Saulina and S. Schäfer-Nameki, F-theory Compactifications for Supersymmetric GUTs, JHEP 08 (2009) 030 [arXiv:0904.3932] [SPIRES].ADSCrossRefGoogle Scholar
  46. [46]
    R. Blumenhagen, T.W. Grimm, B. Jurke and T. Weigand, Global F-theory GUTs, Nucl. Phys. B 829 (2010) 325 [arXiv:0908.1784] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    T.W. Grimm, S. Krause and T. Weigand, F-Theory GUT Vacua on Compact Calabi-Yau Fourfolds, JHEP 07 (2010) 037 [arXiv:0912.3524] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    P. Fileviez Perez, How large could the R-parity violating couplings be?, J. Phys. G 31 (2005) 1025 [hep-ph/0412347] [SPIRES].ADSGoogle Scholar
  49. [49]
    B.C. Allanach, A. Dedes and H.K. Dreiner, Bounds on R-parity violating couplings at the weak scale and at the GUT scale, Phys. Rev. D 60 (1999) 075014 [hep-ph/9906209] [SPIRES].ADSGoogle Scholar
  50. [50]
    MINOS collaboration, P. Adamson et al., Measurement of Neutrino Oscillations with the MINOS Detectors in the NuMI Beam, Phys. Rev. Lett. 101 (2008) 131802 [arXiv:0806.2237] [SPIRES].ADSCrossRefGoogle Scholar
  51. [51]
    E. Dudas and E. Palti, On hypercharge flux and exotics in F-theory GUTs, JHEP 09 (2010) 013 [arXiv:1007.1297] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    R. Donagi and M. Wijnholt, Higgs Bundles and UV Completion in F-theory, arXiv:0904.1218 [SPIRES].
  53. [53]
    M. Buican, D. Malyshev, D.R. Morrison, H. Verlinde and M. Wijnholt, D-branes at singularities, compactification and hypercharge, JHEP 01 (2007) 107 [hep-th/0610007] [S IRES].MathSciNetADSCrossRefGoogle Scholar
  54. [54]
    H. Hayashi, T. Kawano, Y. Tsuchiya and T. Watari, More on Dimension-4 Proton Decay Problem in F-theory – Spectral Surface, Discriminant Locus and Monodromy, Nucl. Phys. B 840 (2010) 304 [arXiv:1004.3870] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  55. [55]
    S. Cecotti, C. Cordova, J.J. Heckman and C. Vafa, T-Branes and Monodromy, arXiv:1010.5780 [SPIRES].

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Michigan Center for Theoretical PhysicsUniversity of MichiganAnn ArborU.S.A.
  2. 2.Enrico Fermi InstituteUniversity of ChicagoChicagoU.S.A.

Personalised recommendations