Advertisement

Identifying boosted objects with N-subjettiness

  • Jesse ThalerEmail author
  • Ken Van Tilburg
Article

Abstract

We introduce a new jet shape — N-subjettiness — designed to identify boosted hadronically-decaying objects like electroweak bosons and top quarks. Combined with a jet invariant mass cut, N-subjettiness is an effective discriminating variable for tagging boosted objects and rejecting the background of QCD jets with large invariant mass. In efficiency studies of boosted W bosons and top quarks, we find tagging efficiencies of 30% are achievable with fake rates of 1%. We also consider the discovery potential for new heavy resonances that decay to pairs of boosted objects, and find significant improvements are possible using N-subjettiness. In this way, N-subjettiness combines the advantages of jet shapes with the discriminating power seen in previous jet substructure algorithms.

Keywords

Jets Beyond Standard Model Hadronic Colliders 

References

  1. [1]
    M.H. Seymour, Searches for new particles using cone and cluster jet algorithms: A Comparative study, Z. Phys. C 62 (1994) 127 [SPIRES].ADSGoogle Scholar
  2. [2]
    J.M. Butterworth, B.E. Cox and J.R. Forshaw, W W scattering at the CERN LHC, Phys. Rev. D 65 (2002) 096014 [hep-ph/0201098] [SPIRES].ADSGoogle Scholar
  3. [3]
    J.M. Butterworth, A. Davison, E. Ozcan and P. Sherwood, Y splitter: An athena tool for studying jet substructure, ATL-PHYS-INT-2007-015.Google Scholar
  4. [4]
    G. Brooijmans, High pT Hadronic Top Quark Identification, Part 1: Jet Mass and Y Splitter., ATL-COM-PHYS-2008-001 (2008).
  5. [5]
    J. Thaler and L.-T. Wang, Strategies to Identify Boosted Tops, JHEP 07 (2008) 092 [arXiv:0806.0023] [SPIRES].ADSCrossRefGoogle Scholar
  6. [6]
    D.E. Kaplan, K. Rehermann, M.D. Schwartz and B. Tweedie, Top Tagging: A Method for Identifying Boosted Hadronically Decaying Top Quarks, Phys. Rev. Lett. 101 (2008) 142001 [arXiv:0806.0848] [SPIRES].ADSCrossRefGoogle Scholar
  7. [7]
    L.G. Almeida et al., Substructure of high-p T Jets at the LHC, Phys. Rev. D 79 (2009) 074017 [arXiv:0807.0234] [SPIRES].MathSciNetADSGoogle Scholar
  8. [8]
    J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [SPIRES].ADSCrossRefGoogle Scholar
  9. [9]
    J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the Large Hadron Collider, arXiv:0810.0409 [SPIRES].
  10. [10]
    S.D. Ellis, C.K. Vermilion and J.R. Walsh, Techniques for improved heavy particle searches with jet substructure, Phys. Rev. D 80 (2009) 051501 [arXiv:0903.5081] [SPIRES].ADSGoogle Scholar
  11. [11]
    S.D. Ellis, C.K. Vermilion and J.R. Walsh, Recombination Algorithms and Jet Substructure: Pruning as a Tool for Heavy Particle Searches, Phys. Rev. D 81 (2010) 094023 [arXiv:0912.0033] [SPIRES].ADSGoogle Scholar
  12. [12]
    D. Krohn, J. Thaler and L.-T. Wang, Jet Trimming, JHEP 02 (2010) 084 [arXiv:0912.1342] [SPIRES].ADSCrossRefGoogle Scholar
  13. [13]
    D.E. Soper and M. Spannowsky, Combining subjet algorithms to enhance ZH detection at the LHC, JHEP 08 (2010) 029 [arXiv:1005.0417] [SPIRES].ADSCrossRefGoogle Scholar
  14. [14]
    J.M. Butterworth, J.R. Ellis, A.R. Raklev and G.P. Salam, Discovering baryon-number violating neutralino decays at the LHC, Phys. Rev. Lett. 103 (2009) 241803 [arXiv:0906.0728] [SPIRES].ADSCrossRefGoogle Scholar
  15. [15]
    T. Plehn, G.P. Salam and M. Spannowsky, Fat Jets for a Light Higgs, Phys. Rev. Lett. 104 (2010) 111801 [arXiv:0910.5472] [SPIRES].ADSCrossRefGoogle Scholar
  16. [16]
    G.D. Kribs, A. Martin, T.S. Roy and M. Spannowsky, Discovering the Higgs Boson in New Physics Events using Jet Substructure, Phys. Rev. D 81 (2010) 111501 [arXiv:0912.4731] [SPIRES].ADSGoogle Scholar
  17. [17]
    J. Gallicchio and M.D. Schwartz, Seeing in Color: Jet Superstructure, Phys. Rev. Lett. 105 (2010) 022001 [arXiv:1001.5027] [SPIRES].ADSCrossRefGoogle Scholar
  18. [18]
    C.-R. Chen, M.M. Nojiri and W. Sreethawong, Search for the Elusive Higgs Boson Using Jet Structure at LHC, JHEP 11 (2010) 012 [arXiv:1006.1151] [SPIRES].ADSCrossRefGoogle Scholar
  19. [19]
    A. Falkowski, D. Krohn, L.-T. Wang, J. Shelton and A. Thalapillil, Unburied Higgs, arXiv:1006.1650 [SPIRES].
  20. [20]
    G.D. Kribs, A. Martin, T.S. Roy and M. Spannowsky, Discovering Higgs Bosons of the MSSM using Jet Substructure, Phys. Rev. D 82 (2010) 095012 [arXiv:1006.1656] [SPIRES].ADSGoogle Scholar
  21. [21]
    L.G. Almeida, S.J. Lee, G. Perez, G. Sterman and I. Sung, Template Overlap Method for Massive Jets, Phys. Rev. D 82 (2010) 054034 [arXiv:1006.2035] [SPIRES].ADSGoogle Scholar
  22. [22]
    T. Plehn, M. Spannowsky, M. Takeuchi and D. Zerwas, Stop Reconstruction with Tagged Tops, JHEP 10 (2010) 078 [arXiv:1006.2833] [SPIRES].ADSCrossRefGoogle Scholar
  23. [23]
    B. Bhattacherjee, M. Guchait, S. Raychaudhuri and K. Sridhar, Boosted Top Quark Signals for Heavy Vector Boson Excitations in a Universal Extra Dimension Model, Phys. Rev. D 82 (2010) 055006 [arXiv:1006.3213] [SPIRES].ADSGoogle Scholar
  24. [24]
    K. Rehermann and B. Tweedie, Efficient Identification of Boosted Semileptonic Top Quarks at the LHC, arXiv:1007.2221 [SPIRES].
  25. [25]
    C. Hackstein and M. Spannowsky, Boosting Higgs discovery - the forgotten channel, Phys. Rev. D 82 (2010) 113012 [arXiv:1008.2202] [SPIRES].ADSGoogle Scholar
  26. [26]
    C. Englert, C. Hackstein and M. Spannowsky, Measuring spin and CP from semi-hadronic ZZ decays using jet substructure, Phys. Rev. D 82 (2010) 114024 [arXiv:1010.0676] [SPIRES].ADSGoogle Scholar
  27. [27]
    A. Katz, M. Son and B. Tweedie, Jet Substructure and the Search for Neutral Spin-One Resonances in Electroweak Boson Channels, arXiv:1010.5253 [SPIRES].
  28. [28]
    I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, N-Jettiness: An Inclusive Event Shape to Veto Jets, Phys. Rev. Lett. 105 (2010) 092002 [arXiv:1004.2489] [SPIRES].ADSCrossRefGoogle Scholar
  29. [29]
    S.D. Ellis, C.K. Vermilion, J.R. Walsh, A. Hornig and C. Lee, Jet Shapes and Jet Algorithms in SCET, JHEP 11 (2010) 101 [arXiv:1001.0014] [SPIRES].ADSCrossRefGoogle Scholar
  30. [30]
    A. Banfi, M. Dasgupta, K. Khelifa-Kerfa and S. Marzani, Non-global logarithms and jet algorithms in high-pT jet shapes, JHEP 08 (2010) 064 [arXiv:1004.3483] [SPIRES].ADSCrossRefGoogle Scholar
  31. [31]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [SPIRES].ADSCrossRefGoogle Scholar
  32. [32]
    E. Farhi, A QCD Test for Jets, Phys. Rev. Lett. 39 (1977) 1587 [SPIRES].
  33. [33]
    S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant K t clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [SPIRES].ADSCrossRefGoogle Scholar
  34. [34]
    S.D. Ellis and D.E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev. D 48 (1993) 3160 [hep-ph/9305266] [SPIRES].ADSGoogle Scholar
  35. [35]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].ADSCrossRefGoogle Scholar
  36. [36]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [SPIRES].ADSzbMATHCrossRefGoogle Scholar
  37. [37]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet, http://fastjet.fr/.
  38. [38]
    M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [SPIRES].ADSGoogle Scholar
  39. [39]
    J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473 [arXiv:0706.2569] [SPIRES].ADSCrossRefGoogle Scholar
  40. [40]
    Y.L. Dokshitzer, G.D. Leder, S. Moretti and B.R. Webber, Better Jet Clustering Algorithms, JHEP 08 (1997) 001 [hep-ph/9707323] [SPIRES].ADSCrossRefGoogle Scholar
  41. [41]
    M. Wobisch and T. Wengler, Hadronization corrections to jet cross sections in deep-inelastic scattering, hep-ph/9907280 [SPIRES].
  42. [42]
    G. Altarelli, B. Mele and M. Ruiz-Altaba, SEARCHING for new heavy vector bosons in \( p\bar{p} \) colliders, Z. Phys. C 45 (1989) 109 [SPIRES].Google Scholar
  43. [43]
    J.-H. Kim, Rest Frame Subjet Algorithm With SISCone Jet For Fully Hadronic Decaying Higgs Search, Phys. Rev. D 83 (2011) 011502(R) [arXiv:1011.1493] [SPIRES].ADSGoogle Scholar
  44. [44]
    C.F. Berger, T. Kucs and G.F. Sterman, Event shape/energy flow correlations, Phys. Rev. D 68 (2003) 014012 [hep-ph/0303051] [SPIRES].ADSGoogle Scholar
  45. [45]
    S. Catani, G. Turnock and B.R. Webber, Jet broadening measures in e + e annihilation, Phys. Lett. B 295 (1992) 269 [SPIRES].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Center for Theoretical PhysicsMassachusetts Institute of TechnologyCambridgeU.S.A.

Personalised recommendations