Type IIB holographic superfluid flows

  • Daniel Areán
  • Matteo Bertolini
  • Chethan Krishnan
  • Tomáš Procházka


We construct fully backreacted holographic superfluid flow solutions in a five-dimensional theory that arises as a consistent truncation of low energy type IIB string theory. We construct a black hole with scalar and vector hair in this theory, and study the phase diagram. As expected, the superfluid phase ceases to exist for high enough superfluid velocity, but we show that the phase transition between normal and superfluid phases is always second order. We also analyze the zero temperature limit of these solutions. Interestingly, we find evidence that the emergent IR conformal symmetry of the zero-temperature domain wall is broken at high enough velocity.


AdS-CFT Correspondence Holography and condensed matter physics (AdS/CMT) Black Holes in String Theory Black Holes 


  1. [1]
    S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [SPIRES].ADSGoogle Scholar
  2. [2]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200 [Int. J. Theor. Phys. 38 (1999) 1113] [SPIRES].MathSciNetADSMATHGoogle Scholar
  3. [3]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].MathSciNetADSGoogle Scholar
  4. [4]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].MathSciNetMATHGoogle Scholar
  5. [5]
    S. Weinberg, The quantum theory of fields, Vol II, Cambridge University Press, Cambridge, U.K. (1996).Google Scholar
  6. [6]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [SPIRES].ADSCrossRefGoogle Scholar
  7. [7]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [SPIRES].Google Scholar
  9. [9]
    G.T. Horowitz, Introduction to holographic superconductors, arXiv:1002.1722 [SPIRES].
  10. [10]
    S.S. Gubser and F.D. Rocha, The gravity dual to a quantum critical point with spontaneous symmetry breaking, Phys. Rev. Lett. 102 (2009) 061601 [arXiv:0807.1737] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    S.S. Gubser, C.P. Herzog, S.S. Pufu and T. Tesileanu, Superconductors from Superstrings, Phys. Rev. Lett. 103 (2009) 141601 [arXiv:0907.3510] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    J.P. Gauntlett, J. Sonner and T. Wiseman, Holographic superconductivity in M-theory, Phys. Rev. Lett. 103 (2009) 151601 [arXiv:0907.3796] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    M. Ammon, J. Erdmenger, M. Kaminski and P. Kerner, Superconductivity from gauge/gravity duality with flavor, Phys. Lett. B 680 (2009) 516 [arXiv:0810.2316] [SPIRES].ADSGoogle Scholar
  14. [14]
    M. Ammon, J. Erdmenger, M. Kaminski and P. Kerner, Flavor superconductivity from gauge/gravity duality, JHEP 10 (2009) 067 [arXiv:0903.1864] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    P. Basu, A. Mukherjee and H.-H. Shieh, Supercurrent: vector hair for an AdS black hole, Phys. Rev. D 79 (2009) 045010 [arXiv:0809.4494] [SPIRES].ADSGoogle Scholar
  17. [17]
    C.P. Herzog, P.K. Kovtun and D.T. Son, Holographic model of superfluidity, Phys. Rev. D 79 (2009) 066002 [arXiv:0809.4870] [SPIRES].MathSciNetADSGoogle Scholar
  18. [18]
    T. Faulkner, G.T. Horowitz and M.M. Roberts, Holographic quantum criticality from multi-trace deformations, arXiv:1008.1581 [SPIRES].
  19. [19]
    V. Keranen, E. Keski-Vakkuri, S. Nowling and K.P. Yogendran, Inhomogeneous structures in holographic superfluids: II. Vortices, Phys. Rev. D 81 (2010) 126012 [arXiv:0912.4280] [SPIRES].ADSGoogle Scholar
  20. [20]
    D. Arean, M. Bertolini, J. Evslin and T. Prochazka, On holographic superconductors with DC current, JHEP 07 (2010) 060 [arXiv:1003.5661] [SPIRES].ADSCrossRefGoogle Scholar
  21. [21]
    M. Tinkham, Introduction to superconductivity, second edition, Dover publications, New York, U.S.A. (1996).Google Scholar
  22. [22]
    J. Sonner and B. Withers, A gravity derivation of the Tisza-Landau model in AdS/CFT, Phys. Rev. D 82 (2010) 026001 [arXiv:1004.2707] [SPIRES].ADSGoogle Scholar
  23. [23]
    D. Arean, P. Basu and C. Krishnan, The many phases of holographic superfluids, JHEP 10 (2010) 006 [arXiv:1006.5165] [SPIRES].ADSCrossRefGoogle Scholar
  24. [24]
    S.S. Gubser, S.S. Pufu and F.D. Rocha, Quantum critical superconductors in string theory and M-theory, Phys. Lett. B 683 (2010) 201 [arXiv:0908.0011] [SPIRES].MathSciNetADSGoogle Scholar
  25. [25]
    G.T. Horowitz and M.M. Roberts, Zero temperature limit of holographic superconductors, JHEP 11 (2009) 015 [arXiv:0908.3677] [SPIRES].ADSCrossRefGoogle Scholar
  26. [26]
    L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, The supergravity dual of N = 1 super Yang-Mills theory, Nucl. Phys. B 569 (2000) 451 [hep-th/9909047] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    J. Distler and F. Zamora, Chiral symmetry breaking in the AdS/CFT correspondence, JHEP 05 (2000) 005 [hep-th/9911040] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    N. Bobev, N. Halmagyi, K. Pilch and N.P. Warner, Supergravity instabilities of non-supersymmetric quantum critical points, Class. Quant. Grav. 27 (2010) 235013 [arXiv:1006.2546] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    J.P. Gauntlett, J. Sonner and T. Wiseman, Quantum criticality and holographic superconductors in M-theory, JHEP 02 (2010) 060 [arXiv:0912.0512] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    V. Balasubramanian and P. Kraus, A stress tensor for anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [SPIRES].MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Daniel Areán
    • 1
    • 2
  • Matteo Bertolini
    • 1
    • 2
  • Chethan Krishnan
    • 2
  • Tomáš Procházka
    • 2
  1. 1.International Centre for Theoretical Physics (ICTP) Strada Costiera 11TriesteItaly
  2. 2.SISSA and INFN — Sezione di TriesteTriesteItaly

Personalised recommendations