D1D5 microstate geometries from string amplitudes

Open Access


We reproduce the asymptotic expansion of the D1D5 microstate geometries by computing the emission amplitudes of closed string states from disks with mixed D1D5 boundary conditions. Thus we provide a direct link between the supergravity and D-brane descriptions of the D1D5 microstates at non-zero string coupling. Microscopically, the profile functions characterizing the microstate solutions are encoded in the choice of a condensate for the twisted open string states connecting D1 and D5 branes.


Black Holes in String Theory D-branes 


  1. [1]
    A. Sen, Extremal black holes and elementary string states, Mod. Phys. Lett. A 10 (1995) 2081 [hep-th/9504147] [SPIRES].ADSGoogle Scholar
  2. [2]
    A. Strominger and C. Vafa, Microscopic Origin of the Bekenstein-Hawking Entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [SPIRES].MathSciNetADSGoogle Scholar
  3. [3]
    S.D. Mathur, The fuzzball proposal for black holes: An elementary review, Fortsch. Phys. 53 (2005) 793 [hep-th/0502050] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  4. [4]
    I. Bena and N.P. Warner, Black holes, black rings and their microstates, Lect. Notes Phys. 755 (2008) 1 [hep-th/0701216] [SPIRES].CrossRefMathSciNetGoogle Scholar
  5. [5]
    K. Skenderis and M. Taylor, The fuzzball proposal for black holes, Phys. Rept. 467 (2008) 117 [arXiv:0804.0552] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    V. Balasubramanian, J. de Boer, S. El-Showk and I. Messamah, Black Holes as Effective Geometries, Class. Quant. Grav. 25 (2008) 214004 [arXiv:0811.0263] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    O. Lunin and S.D. Mathur, Metric of the multiply wound rotating string, Nucl. Phys. B 610 (2001) 49 [hep-th/0105136] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  8. [8]
    O. Lunin and S.D. Mathur, AdS/CFT duality and the black hole information paradox, Nucl. Phys. B 623 (2002) 342 [hep-th/0109154] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    O. Lunin, S.D. Mathur and A. Saxena, What is the gravity dual of a chiral primary?, Nucl. Phys. B 655 (2003) 185 [hep-th/0211292] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  10. [10]
    O. Lunin, J.M. Maldacena and L. Maoz, Gravity solutions for the D1 − D5 system with angular momentum, hep-th/0212210 [SPIRES].
  11. [11]
    M. Taylor, General 2 charge geometries, JHEP 03 (2006) 009 [hep-th/0507223] [SPIRES].CrossRefADSGoogle Scholar
  12. [12]
    I. Kanitscheider, K. Skenderis and M. Taylor, Fuzzballs with internal excitations, JHEP 06 (2007) 056 [arXiv:0704.0690] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  13. [13]
    O. Lunin, Adding momentum to D1 − D5 system, JHEP 04 (2004) 054 [hep-th/0404006] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    S. Giusto, S.D. Mathur and A. Saxena, Dual geometries for a set of 3-charge microstates, Nucl. Phys. B 701 (2004) 357 [hep-th/0405017] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  15. [15]
    S. Giusto and S.D. Mathur, Geometry of D1 − D5 − P bound states, Nucl. Phys. B 729 (2005) 203 [hep-th/0409067] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  16. [16]
    I. Bena and N.P. Warner, Bubbling supertubes and foaming black holes, Phys. Rev. D 74 (2006) 066001 [hep-th/0505166] [SPIRES].MathSciNetADSGoogle Scholar
  17. [17]
    P. Berglund, E.G. Gimon and T.S. Levi, Supergravity microstates for BPS black holes and black rings, JHEP 06 (2006) 007 [hep-th/0505167] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  18. [18]
    I. Bena, C.-W. Wang and N.P. Warner, Mergers and Typical Black Hole Microstates, JHEP 11 (2006) 042 [hep-th/0608217] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    I. Bena, N. Bobev, C. Ruef and N.P. Warner, Entropy Enhancement and Black Hole Microstates, arXiv:0804.4487 [SPIRES].
  20. [20]
    P. Di Vecchia et al., Classical p-branes from boundary state, Nucl. Phys. B 507 (1997) 259 [hep-th/9707068] [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    M. Bertolini et al., Is a classical description of stable non-BPS D-branes possible?, Nucl. Phys. B 590 (2000) 471 [hep-th/0007097] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  22. [22]
    A. Dabholkar, J.P. Gauntlett, J.A. Harvey and D. Waldram, Strings as Solitons and Black Holes as Strings, Nucl. Phys. B 474 (1996) 85 [hep-th/9511053] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    C.G. Callan, J.M. Maldacena and A.W. Peet, Extremal Black Holes As Fundamental Strings, Nucl. Phys. B 475 (1996) 645 [hep-th/9510134] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  24. [24]
    D. Martelli and J.F. Morales, Bubbling AdS 3, JHEP 02 (2005) 048 [hep-th/0412136] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  25. [25]
    C. Bachas, Relativistic string in a pulse, Ann. Phys. 305 (2003) 286 [hep-th/0212217] [SPIRES].MATHMathSciNetADSGoogle Scholar
  26. [26]
    Y. Hikida, H. Takayanagi and T. Takayanagi, Boundary states for D-branes with traveling waves, JHEP 04 (2003) 032 [hep-th/0303214] [SPIRES].CrossRefADSGoogle Scholar
  27. [27]
    M. Billó et al., Classical gauge instantons from open strings, JHEP 02 (2003) 045 [hep-th/0211250] [SPIRES].CrossRefADSGoogle Scholar
  28. [28]
    M. Billó’ et al., Flux interactions on D-branes and instantons, JHEP 10 (2008) 112 [arXiv:0807.1666] [SPIRES].CrossRefADSGoogle Scholar
  29. [29]
    J. Polchinski, String theory. Vol. 2: Superstring theory and beyond, Cambridge University Press, Cambridge U.K. (1998).Google Scholar
  30. [30]
    M. Billó et al., Microscopic string analysis of the D0-D8 brane system and dual RR states, Nucl. Phys. B 526 (1998) 199 [hep-th/9802088] [SPIRES].CrossRefADSGoogle Scholar
  31. [31]
    V.A. Kostelecky, O. Lechtenfeld, W. Lerche, S. Samuel and S. Watamura, Conformal Techniques, Bosonization and Tree Level String Amplitudes, Nucl. Phys. B 288 (1987) 173 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  32. [32]
    J.F. Morales, C.A. Scrucca and M. Serone, Scale independent spin effects in D-brane dynamics, Nucl. Phys. B 534 (1998) 223 [hep-th/9801183] [SPIRES].CrossRefMathSciNetADSGoogle Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Stefano Giusto
    • 1
  • Jose F. Morales
    • 2
  • Rodolfo Russo
    • 3
  1. 1.Laboratoire de Physique Théorique et Hautes EnergiesUniversité Pierre et Marie Curie - Paris 6Paris cedex 05France
  2. 2.INFNUniversità di Roma “Tor Vergata”RomaItalia
  3. 3.Centre for Research in String Theory, Department of PhysicsQueen Mary University of LondonLondonUnited Kingdom

Personalised recommendations