Advertisement

Holographic GB gravity in arbitrary dimensions

  • Alex Buchel
  • Jorge EscobedoEmail author
  • Robert C. Myers
  • Miguel F. Paulos
  • Aninda Sinha
  • Michael Smolkin
Article

Abstract

We study the properties of the holographic CFT dual to Gauss-Bonnet gravity in general D(≥ 5) dimensions. We establish the AdS/CFT dictionary and in particular relate the couplings of the gravitational theory to the universal couplings arising in correlators of the stress tensor of the dual CFT. This allows us to examine constraints on the gravitational couplings by demanding consistency of the CFT. In particular, one can demand positive energy fluxes in scattering processes or the causal propagation of fluctuations. We also examine the holographic hydrodynamics, commenting on the shear viscosity as well as the relaxation time. The latter allows us to consider causality constraints arising from the second-order truncated theory of hydrodynamics.

Keywords

Gauge-gravity correspondence AdS-CFT Correspondence 

References

  1. [1]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].zbMATHADSMathSciNetGoogle Scholar
  2. [2]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].zbMATHMathSciNetGoogle Scholar
  3. [3]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].ADSMathSciNetGoogle Scholar
  4. [4]
    R. Baier, P. Romatschke, D.T. Son, A.O. Starinets and M.A. Stephanov, Relativistic viscous hydrodynamics, conformal invariance and holography, JHEP 04 (2008) 100 [arXiv:0712.2451] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  5. [5]
    S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear Fluid Dynamics from Gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    D.T. Son and A.O. Starinets, Viscosity, Black Holes and Quantum Field Theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 95 [arXiv:0704.0240] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    A. Buchel and J.T. Liu, Universality of the shear viscosity in supergravity, Phys. Rev. Lett. 93 (2004) 090602 [hep-th/0311175] [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    A. Buchel, J.T. Liu and A.O. Starinets, Coupling constant dependence of the shear viscosity in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 707 (2005) 56 [hep-th/0406264] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  10. [10]
    A. Buchel, On universality of stress-energy tensor correlation functions in supergravity, Phys. Lett. B 609 (2005) 392 [hep-th/0408095] [SPIRES].ADSMathSciNetGoogle Scholar
  11. [11]
    P. Benincasa, A. Buchel and R. Naryshkin, The shear viscosity of gauge theory plasma with chemical potentials, Phys. Lett. B 645 (2007) 309 [hep-th/0610145] [SPIRES].ADSGoogle Scholar
  12. [12]
    D. Mateos, R.C. Myers and R.M. Thomson, Holographic viscosity of fundamental matter, Phys. Rev. Lett. 98 (2007) 101601 [hep-th/0610184] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    K. Landsteiner and J. Mas, The shear viscosity of the non-commutative plasma, JHEP 07 (2007) 088 [arXiv:0706.0411] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  14. [14]
    R.C. Myers, M.F. Paulos and A. Sinha, Quantum corrections to η/s, Phys. Rev. D 79 (2009) 041901 [arXiv:0806.2156] [SPIRES].ADSGoogle Scholar
  15. [15]
    N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [SPIRES].ADSGoogle Scholar
  16. [16]
    E. Imeroni and A. Sinha, Non-relativistic metrics with extremal limits, JHEP 09 (2009) 096 [arXiv:0907.1892] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    M. Edalati, J.I. Jottar and R.G. Leigh, Transport Coefficients at Zero Temperature from Extremal Black Holes, JHEP 01 (2010) 018 [arXiv:0910.0645] [SPIRES].CrossRefGoogle Scholar
  18. [18]
    M.F. Paulos, Transport coefficients, membrane couplings and universality at extremality, JHEP 02 (2010) 067 [arXiv:0910.4602] [SPIRES].CrossRefGoogle Scholar
  19. [19]
    S.K. Chakrabarti, S. Jain and S. Mukherji, Viscosity to entropy ratio at extremality, JHEP 01 (2010) 068 [arXiv:0910.5132] [SPIRES].CrossRefGoogle Scholar
  20. [20]
    R.G. Cai, Y. Liu and Y.W. Sun, Transport Coefficients from Extremal Gauss-Bonnet Black Holes, arXiv:0910.4705 [SPIRES].
  21. [21]
    D. Teaney, Effect of shear viscosity on spectra, elliptic flow and Hanbury Brown-Twiss radii, Phys. Rev. C 68 (2003) 034913 [nucl-th/0301099] [SPIRES].ADSGoogle Scholar
  22. [22]
    PHENIX collaboration, A. Adare et al., Energy Loss and Flow of Heavy Quarks in Au+Au Collisions at \( \sqrt ( {s_N}N) = 200\;GeV \), Phys. Rev. Lett. 98 (2007) 172301 [nucl-ex/0611018] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    M. Luzum and P. Romatschke, Conformal Relativistic Viscous Hydrodynamics: Applications to RHIC results at \( \sqrt ( {s_N}N) = 200\;GeV \), Phys. Rev. C 78 (2008) 034915 [arXiv:0804.4015] [SPIRES].ADSGoogle Scholar
  24. [24]
    Y. Kats and P. Petrov, Effect of curvature squared corrections in AdS on the viscosity of the dual gauge theory, JHEP 01 (2009) 044 [arXiv:0712.0743] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  25. [25]
    A. Buchel, R.C. Myers and A. Sinha, Beyond η/s = 1/4π, JHEP 03 (2009) 084 [arXiv:0812.2521] [SPIRES].CrossRefADSGoogle Scholar
  26. [26]
    A. Sinha and R.C. Myers, The viscosity bound in string theory, Nucl. Phys. A 830 (2009) 295c–298c [arXiv:0907.4798] [SPIRES].ADSGoogle Scholar
  27. [27]
    R.C. Myers, M.F. Paulos and A. Sinha, Holographic Hydrodynamics with a Chemical Potential, JHEP 06 (2009) 006 [arXiv:0903.2834] [SPIRES].CrossRefADSGoogle Scholar
  28. [28]
    M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity Bound Violation in Higher Derivative Gravity, Phys. Rev. D 77 (2008) 126006 [arXiv:0712.0805] [SPIRES].ADSGoogle Scholar
  29. [29]
    M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, The Viscosity Bound and Causality Violation, Phys. Rev. Lett. 100 (2008) 191601 [arXiv:0802.3318] [SPIRES].CrossRefADSGoogle Scholar
  30. [30]
    X.H. Ge and S.J. Sin, Shear viscosity, instability and the upper bound of the Gauss-Bonnet coupling constant, JHEP 05 (2009) 051 [arXiv:0903.2527] [SPIRES].CrossRefADSGoogle Scholar
  31. [31]
    R.G. Cai, Z.Y. Nie and Y.W. Sun, Shear Viscosity from Effective Couplings of Gravitons, Phys. Rev. D 78 (2008) 126007 [arXiv:0811.1665] [SPIRES].ADSGoogle Scholar
  32. [32]
    R.G. Cai, Z.Y. Nie, N. Ohta and Y.W. Sun, Shear Viscosity from Gauss-Bonnet Gravity with a Dilaton Coupling, Phys. Rev. D 79 (2009) 066004 [arXiv:0901.1421] [SPIRES].ADSGoogle Scholar
  33. [33]
    J. de Boer, M. Kulaxizi and A. Parnachev, AdS 7/CFT 6 , Gauss-Bonnet Gravity and Viscosity Bound, arXiv:0910.5347 [SPIRES].
  34. [34]
    D.M. Hofman and J. Maldacena, Conformal collider physics: Energy and charge correlations, JHEP 05 (2008) 012 [arXiv:0803.1467] [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    X.O. Camanho and J.D. Edelstein, Causality constraints in AdS/CFT from conformal collider physics and Gauss-Bonnet gravity, arXiv:0911.3160 [SPIRES].
  36. [36]
    R.-G. Cai, Gauss-Bonnet black holes in AdS spaces, Phys. Rev. D 65 (2002) 084014 [hep-th/0109133] [SPIRES].ADSGoogle Scholar
  37. [37]
    D.G. Boulware and S. Deser, String Generated Gravity Models, Phys. Rev. Lett. 55 (1985) 2656 [SPIRES].CrossRefADSGoogle Scholar
  38. [38]
    R.C. Myers and B. Robinson, Black Holes in Quasi-topological Gravity, in preparation.Google Scholar
  39. [39]
    M.J. Duff, Observations on Conformal Anomalies, Nucl. Phys. B 125 (1977) 334 [SPIRES].CrossRefADSGoogle Scholar
  40. [40]
    M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  41. [41]
    M. Henningson and K. Skenderis, Holography and the Weyl anomaly, Fortsch. Phys. 48 (2000) 125 [hep-th/9812032] [SPIRES].zbMATHCrossRefADSMathSciNetGoogle Scholar
  42. [42]
    R.C. Myers, M.F. Paulos and A. Sinha, Holographic studies of quasi-topological gravity, in preparation.Google Scholar
  43. [43]
    J. Erdmenger and H. Osborn, Conserved currents and the energy-momentum tensor in conformally invariant theories for general dimensions, Nucl. Phys. B 483 (1997) 431 [hep-th/9605009] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  44. [44]
    H. Osborn and A.C. Petkou, Implications of Conformal Invariance in Field Theories for General Dimensions, Ann. Phys. 231 (1994) 311 [hep-th/9307010] [SPIRES].zbMATHCrossRefADSMathSciNetGoogle Scholar
  45. [45]
    G. Arutyunov and S. Frolov, Three-point Green function of the stress-energy tensor in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 026004 [hep-th/9901121] [SPIRES].ADSMathSciNetGoogle Scholar
  46. [46]
    H. Liu and A.A. Tseytlin, D = 4 super Yang-Mills, D = 5 gauged supergravity and D = 4 conformal supergravity, Nucl. Phys. B 533 (1998) 88 [hep-th/9804083] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  47. [47]
    D.M. Hofman, Higher Derivative Gravity, Causality and Positivity of Energy in a UV complete QFT, Nucl. Phys. B 823 (2009) 174 [arXiv:0907.1625] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  48. [48]
    A. Buchel and R.C. Myers, Causality of Holographic Hydrodynamics, JHEP 08 (2009) 016 [arXiv:0906.2922] [SPIRES].CrossRefADSGoogle Scholar
  49. [49]
    P.K. Kovtun and A.O. Starinets, Quasinormal modes and holography, Phys. Rev. D 72 (2005) 086009 [hep-th/0506184] [SPIRES].ADSGoogle Scholar
  50. [50]
    R.C. Myers, A.O. Starinets and R.M. Thomson, Holographic spectral functions and diffusion constants for fundamental matter, JHEP 11 (2007) 091 [arXiv:0706.0162] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  51. [51]
    X.H. Ge, Y. Matsuo, F.W. Shu, S.J. Sin and T. Tsukioka, Viscosity Bound, Causality Violation and Instability with Stringy Correction and Charge, JHEP 10 (2008) 009 [arXiv:0808.2354] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  52. [52]
    P. Romatschke, New Developments in Relativistic Viscous Hydrodynamics, Int. J. Mod. Phys. E 19 (2010) 1 [arXiv:0902.3663] [SPIRES].ADSGoogle Scholar
  53. [53]
    W.A. Hiscock and L. Lindblom, Stability and causality in dissipative relativistic fluids, Annals Phys. 151 (1983) 466 [SPIRES].zbMATHCrossRefADSMathSciNetGoogle Scholar
  54. [54]
    W.A. Hiscock and L. Lindblom, Linear plane waves in dissipative relativistic fluids, Phys. Rev. D 35 (1987) 3723 [SPIRES].ADSMathSciNetGoogle Scholar
  55. [55]
    W.A. Hiscock and L. Lindblom, Generic instabilities in first-order dissipative relativistic fluid theories, Phys. Rev. D 31 (1985) 725 [SPIRES].ADSMathSciNetGoogle Scholar
  56. [56]
    I. Müller, Zum Paradoxon der Wärmeleitungstheorie, Z. Phys. 198 (1967) 329.zbMATHCrossRefADSGoogle Scholar
  57. [57]
    W. Israel, Nonstationary irreversible thermodynamics: A Causal relativistic theory, Ann. Phys. 100 (1976) 310 [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  58. [58]
    W. Israel and J.M. Stewart, Thermodynamics of nonstationary and transient effects in a relativistic gas, Phys. Lett. A 58 (1976) 213.ADSGoogle Scholar
  59. [59]
    W. Israel and J.M. Stewart, Transient relativistic thermodynamics and kinetic theory, Ann. Phys. 118 (1979) 341 [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  60. [60]
    A. Muronga, Causal Theories of DissiPative Relativistic Fluid Dynamics for Nuclear Collisions, Phys. Rev. C 69 (2004) 034903 [nucl-th/0309055] [SPIRES].ADSGoogle Scholar
  61. [61]
    L. Brillouin, Wave Propagation and Group Velocity, Academic Press, New York U.S.A. (1960).zbMATHGoogle Scholar
  62. [62]
    R. Fox, C.G. Kuper and S.G. Lipson, Faster-than-light group velocities and causality violation, Proc. Roy. Soc. Lond. A 316 (1970) 515.ADSGoogle Scholar
  63. [63]
    E. Krotscheck and W. Kundt, Causality Criteria, Commun. Math. Phys. 60 (1978) 171.CrossRefADSMathSciNetGoogle Scholar
  64. [64]
    D.T. Son and A.O. Starinets, Minkowski-space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  65. [65]
    A. Buchel, R.C. Myers, M.F. Paulos and A. Sinha, Universal holographic hydrodynamics at finite coupling, Phys. Lett. B 669 (2008) 364 [arXiv:0808.1837] [SPIRES].ADSGoogle Scholar
  66. [66]
    J. Noronha, M. Gyulassy and G. Torrieri, Constraints on AdS/CFT Gravity Dual Models of Heavy Ion Collisions, arXiv:0906.4099 [SPIRES].
  67. [67]
    A. Buchel, M.P. Heller and R.C. Myers, sQGP as hCFT, Phys. Lett. B 680 (2009) 521 [arXiv:0908.2802] [SPIRES].ADSGoogle Scholar
  68. [68]
    S. Sachdev, Polylogarithm identities in a conformal field theory in three-dimensions, Phys. Lett. B 309 (1993) 285 [hep-th/9305131] [SPIRES].ADSMathSciNetGoogle Scholar
  69. [69]
    A.H. Castro Neto and E.H. Fradkin, The Thermodynamics of quantum systems and generalizations of Zamolodchikov’s C theorem, Nucl. Phys. B 400 (1993) 525 [cond-mat/9301009] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  70. [70]
    P. Kovtun and A. Ritz, Black holes and universality classes of critical points, Phys. Rev. Lett. 100 (2008) 171606 [arXiv:0801.2785] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  71. [71]
    P. Kovtun and A. Ritz, Universal conductivity and central charges, Phys. Rev. D 78 (2008) 066009 [arXiv:0806.0110] [SPIRES].ADSGoogle Scholar
  72. [72]
    S.S. Gubser, I.R. Klebanov and A.W. Peet, Entropy and Temperature of Black 3-Branes, Phys. Rev. D 54 (1996) 3915 [hep-th/9602135] [SPIRES].ADSMathSciNetGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Alex Buchel
    • 1
    • 2
  • Jorge Escobedo
    • 1
    • 3
    Email author
  • Robert C. Myers
    • 1
  • Miguel F. Paulos
    • 4
  • Aninda Sinha
    • 1
  • Michael Smolkin
    • 1
    • 5
  1. 1.Perimeter Institute for Theoretical PhysicsWaterlooCanada
  2. 2.Department of Applied MathematicsUniversity of Western OntarioLondonCanada
  3. 3.Department of Physics and Astronomy and Guelph-Waterloo Physics InstituteUniversity of WaterlooWaterlooCanada
  4. 4.Department of Applied Mathematics and Theoretical PhysicsCambridgeU.K.
  5. 5.Racah Institute of PhysicsHebrew UniversityJerusalemIsrael

Personalised recommendations