An analytic result for the two-loop hexagon Wilson loop in \( \mathcal{N} = 4 \) SYM

  • Vittorio Del Duca
  • Claude Duhr
  • Vladimir A. Smirnov


In the planar \( \mathcal{N} = 4 \) supersymmetric Yang-Mills theory, the conformal symmetry constrains multi-loop n-edged Wilson loops to be basically given in terms of the one-loop n-edged Wilson loop, augmented, for n ≥ 6, by a function of conformally invariant cross ratios. We identify a class of kinematics for which the Wilson loop exhibits exact Regge factorisation and which leave invariant the analytic form of the multi-loop n-edged Wilson loop. In those kinematics, the analytic result for the Wilson loop is the same as in general kinematics, although the computation is remarkably simplified with respect to general kinematics. Using the simplest of those kinematics, we have performed the first analytic computation of the two-loop six-edged Wilson loop in general kinematics.


Supersymmetric gauge theory Gauge Symmetry 


  1. [1]
    C. Anastasiou, Z. Bern, L.J. Dixon and D.A. Kosower, Planar amplitudes in maximally supersymmetric Yang-Mills theory, Phys. Rev. Lett. 91 (2003) 251602 [hep-th/0309040] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  2. [2]
    Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001 [hep-th/0505205] [SPIRES].MathSciNetADSGoogle Scholar
  3. [3]
    Z. Bern, M. Czakon, D.A. Kosower, R. Roiban and V.A. Smirnov, Two-loop iteration of five-point N = 4 super-Yang-Mills amplitudes, Phys. Rev. Lett. 97 (2006) 181601 [hep-th/0604074] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  4. [4]
    F. Cachazo, M. Spradlin and A. Volovich, Iterative structure within the five-particle two-loop amplitude, Phys. Rev. D 74 (2006) 045020 [hep-th/0602228] [SPIRES].ADSGoogle Scholar
  5. [5]
    L.F. Alday and J. Maldacena, Comments on gluon scattering amplitudes via AdS/CFT, JHEP 11 (2007) 068 [arXiv:0710.1060] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, The hexagon Wilson loop and the BDS ansatz for the six- gluon amplitude, Phys. Lett. B 662 (2008) 456 [arXiv:0712.4138] [SPIRES].MathSciNetADSGoogle Scholar
  7. [7]
    J. Bartels, L.N. Lipatov and A. Sabio Vera, BFKL Pomeron, reggeized gluons and Bern-Dixon-Smirnov amplitudes, Phys. Rev. D 80 (2009) 045002 [arXiv:0802.2065] [SPIRES].ADSGoogle Scholar
  8. [8]
    J. Bartels, L.N. Lipatov and A. Sabio Vera, N = 4 supersymmetric Yang-Mills scattering amplitudes at high energies: the Regge cut contribution, Eur. Phys. J. C 65 (2010) 587 [arXiv:0807.0894] [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    R.M. Schabinger, The imaginary part of the N = 4 super-Yang-Mills two-loop six-point MHV amplitude in multi-Regge kinematics, JHEP 11 (2009) 108 [arXiv:0910.3933] [SPIRES].CrossRefADSGoogle Scholar
  10. [10]
    Z. Bern et al., The two-loop six-gluon MHV amplitude in maximally supersymmetric Yang-Mills theory, Phys. Rev. D 78 (2008) 045007 [arXiv:0803.1465] [SPIRES].MathSciNetADSGoogle Scholar
  11. [11]
    F. Cachazo, M. Spradlin and A. Volovich, Leading singularities of the two-loop six-particle MHV amplitude, Phys. Rev. D 78 (2008) 105022 [arXiv:0805.4832] [SPIRES].ADSGoogle Scholar
  12. [12]
    L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007) 064 [arXiv:0705.0303] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  13. [13]
    J.M. Drummond, G.P. Korchemsky and E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys. B 795 (2008) 385 [arXiv:0707.0243] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    A. Brandhuber, P. Heslop and G. Travaglini, MHV amplitudes in N = 4 super Yang-Mills and Wilson loops, Nucl. Phys. B 794 (2008) 231 [arXiv:0707.1153] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  15. [15]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, On planar gluon amplitudes/Wilson loops duality, Nucl. Phys. B 795 (2008) 52 [arXiv:0709.2368] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  16. [16]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys. B 826 (2010) 337 [arXiv:0712.1223] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  17. [17]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Hexagon Wilson loop = six-gluon MHV amplitude, Nucl. Phys. B 815 (2009) 142 [arXiv:0803.1466] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  18. [18]
    C. Anastasiou et al., Two-loop polygon Wilson loops in N = 4 SYM, JHEP 05 (2009) 115 [arXiv:0902.2245] [SPIRES].CrossRefADSGoogle Scholar
  19. [19]
    C. Vergu, The two-loop MHV amplitudes in N = 4 supersymmetric Yang-Mills theory, arXiv:0908.2394 [SPIRES].
  20. [20]
    L.F. Alday, D. Gaiotto and J. Maldacena, Thermodynamic bubble ansatz, arXiv:0911.4708 [SPIRES].
  21. [21]
    L.F. Alday and J. Maldacena, Null polygonal Wilson loops and minimal surfaces in Anti-de-Sitter space, JHEP 11 (2009) 082 [arXiv:0904.0663] [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    A. Brandhuber, P. Heslop, V.V. Khoze and G. Travaglini, Simplicity of polygon Wilson loops in N = 4 SYM, JHEP 01 (2010) 050 [arXiv:0910.4898] [SPIRES].CrossRefGoogle Scholar
  23. [23]
    R.C. Brower, H. Nastase, H.J. Schnitzer and C.-I. Tan, Implications of multi-Regge limits for the Bern-Dixon-Smirnov conjecture, Nucl. Phys. B 814 (2009) 293 [arXiv:0801.3891] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  24. [24]
    V. Del Duca, C. Duhr and E.W.N. Glover, Iterated amplitudes in the high-energy limit, JHEP 12 (2008) 097 [arXiv:0809.1822] [SPIRES].CrossRefADSGoogle Scholar
  25. [25]
    V.S. Fadin and L.N. Lipatov, High-energy production of gluons in a quasimulti Regge kinematics, JETP Lett. 49 (1989) 352 [Yad. Fiz. 50 (1989) 1141] [SPIRES].ADSGoogle Scholar
  26. [26]
    V. Del Duca, Real next-to-leading corrections to the multigluon amplitudes in the helicity formalism, Phys. Rev. D 54 (1996) 989 [hep-ph/9601211] [SPIRES].ADSGoogle Scholar
  27. [27]
    V. Del Duca, A. Frizzo and F. Maltoni, Factorization of tree QCD amplitudes in the high-energy limit and in the collinear limit, Nucl. Phys. B 568 (2000) 211 [hep-ph/9909464] [SPIRES].CrossRefADSGoogle Scholar
  28. [28]
    C. Duhr, New techniques in QCD, Ph.D. thesis, Université Catholique de Louvain, Louvain-la-Neuve, Belgium (2009).Google Scholar
  29. [29]
    J.G.M. Gatheral, Exponentiation of eikonal cross-sections in nonabelian gauge theories, Phys. Lett. B 133 (1983) 90 [SPIRES].MathSciNetADSGoogle Scholar
  30. [30]
    J. Frenkel and J.C. Taylor, Nonabelian eikonal exponentiation, Nucl. Phys. B 246 (1984) 231 [SPIRES].CrossRefADSGoogle Scholar
  31. [31]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One-loop n-point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  32. [32]
    I.A. Korchemskaya and G.P. Korchemsky, On lightlike Wilson loops, Phys. Lett. B 287 (1992) 169 [SPIRES].ADSGoogle Scholar
  33. [33]
    V.A. Smirnov, Analytical result for dimensionally regularized massless on-shell double box, Phys. Lett. B 460 (1999) 397 [hep-ph/9905323] [SPIRES].ADSGoogle Scholar
  34. [34]
    J.B. Tausk, Non-planar massless two-loop Feynman diagrams with four on-shell legs, Phys. Lett. B 469 (1999) 225 [hep-ph/9909506] [SPIRES].MathSciNetADSGoogle Scholar
  35. [35]
    V.A. Smirnov, Evaluating Feynman integrals, Springer Tracts Mod. Phys. 211 (2004) 1 [SPIRES].Google Scholar
  36. [36]
    V.A. Smirnov, Feynman integral calculus, Springer, Berlin Germany (2006), p. 283 [].Google Scholar
  37. [37]
    M. Czakon, Automatized analytic continuation of Mellin-Barnes integrals, Comput. Phys. Commun. 175 (2006) 559[hep-ph/0511200] [SPIRES].CrossRefADSGoogle Scholar
  38. [38]
    A.V. Smirnov and V.A. Smirnov, On the resolution of singularities of multiple Mellin-Barnes integrals, Eur. Phys. J. C 62 (2009) 445 [arXiv:0901.0386] [SPIRES].CrossRefADSGoogle Scholar
  39. [39]
    M. Czakon, MBasymptotics,
  40. [40]
    D.A. Kosower, barnesroutines,
  41. [41]
    A.V. Smirnov and M.N. Tentyukov, Feynman integral evaluation by a sector decomposition approach (FIESTA), Comput. Phys. Commun. 180 (2009) 735 [arXiv:0807.4129] [SPIRES].CrossRefADSGoogle Scholar
  42. [42]
    A.V. Smirnov, V.A. Smirnov and M. Tentyukov, FIESTA 2: parallelizeable multiloop numerical calculations, arXiv:0912.0158 [SPIRES].
  43. [43]
    S. Moch, P. Uwer and S. Weinzierl, Nested sums, expansion of transcendental functions and multi-scale multi-loop integrals, J. Math. Phys. 43 (2002) 3363 [hep-ph/0110083] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  44. [44]
    S. Moch and P. Uwer, XSummer: transcendental functions and symbolic summation in form, Comput. Phys. Commun. 174 (2006) 759 [math-ph/0508008] [SPIRES].CrossRefADSGoogle Scholar
  45. [45]
    F. Jegerlehner, M.Y. Kalmykov and O. Veretin, MS-bar vs. pole masses of gauge bosons. II: two-loop electroweak fermion corrections, Nucl. Phys. B 658 (2003) 49 [hep-ph/0212319] [SPIRES].CrossRefADSGoogle Scholar
  46. [46]
    M.Y. Kalmykov, B.F.L. Ward and S.A. Yost, Multiple (inverse) binomial sums of arbitrary weight and depth and the all-order ϵ-expansion of generalized hypergeometric functions with one half-integer value of parameter, JHEP 10 (2007) 048 [arXiv:0707.3654] [SPIRES].CrossRefADSGoogle Scholar
  47. [47]
    V. Del Duca, C. Duhr and V.A. Smirnov, The two-loop hexagon Wilson loop in N = 4 SYM, in preparation.Google Scholar
  48. [48]
    E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [SPIRES].MathSciNetADSGoogle Scholar
  49. [49]
    A.B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, Math. Res. Lett. 5 (1998) 497.zbMATHMathSciNetGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Vittorio Del Duca
    • 1
  • Claude Duhr
    • 2
  • Vladimir A. Smirnov
    • 3
  1. 1.Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di FrascatiFrascati, RomaItaly
  2. 2.Institute for Particle Physics PhenomenologyUniversity of DurhamDurhamU.K.
  3. 3.Nuclear Physics Institute of Moscow State UniversityMoscowRussia

Personalised recommendations