Advertisement

On uplifted SUSY-breaking vacua and direct mediation in generalized SQCD

  • Roberto Auzzi
  • Shmuel Elitzur
  • Amit Giveon
Article

Abstract

We search for viable models of direct gauge mediation, where the SUSY-breaking sector is (generalized) SQCD, which has cosmologically favorable uplifted vacua even when the reheating temperature is well above the messenger scale. This requires a relatively large tadpole term in the scalar potential for the spurion field X and, consequently, we argue that pure (deformed) SQCD is not a viable model. On the other hand, in SQCD with an adjoint, which is natural e.g. in string theory, assuming an appropriate sign in the Kähler potential for X, such metastable vacua are possible.

Keywords

Supersymmetry Breaking Supersymmetry and Duality Supersymmetric Standard Model 

References

  1. [1]
    G.F. Giudice and R. Rattazzi, Theories with gauge-mediated supersymmetry breaking, Phys. Rept. 322 (1999) 419 [hep-ph/9801271] [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    K.A. Intriligator and N. Seiberg, Lectures on supersymmetry breaking, Class. Quant. Grav. 24 (2007) S741 [hep-ph/0702069] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  3. [3]
    K.A. Intriligator, N. Seiberg and D. Shih, Dynamical SUSY breaking in meta-stable vacua, JHEP 04 (2006) 021 [hep-th/0602239] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  4. [4]
    K.A. Intriligator, N. Seiberg and D. Shih, Supersymmetry breaking, R-symmetry breaking and metastable vacua, JHEP 07 (2007) 017 [hep-th/0703281] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    N. Haba and N. Maru, A simple model of direct gauge mediation of metastable supersymmetry breaking, Phys. Rev. D 76 (2007) 115019 [arXiv:0709.2945] [SPIRES].ADSGoogle Scholar
  6. [6]
    A. Giveon and D. Kutasov, Stable and metastable vacua in SQCD, Nucl. Phys. B 796 (2008) 25 [arXiv:0710.0894] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  7. [7]
    Z. Komargodski and D. Shih, Notes on SUSY and R-symmetry breaking in Wess-Zumino models, JHEP 04 (2009) 093 [arXiv:0902.0030] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    A. Giveon, A. Katz and Z. Komargodski, Uplifted metastable vacua and gauge mediation in SQCD, JHEP 07 (2009) 099 [arXiv:0905.3387] [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    R. Kitano, H. Ooguri and Y. Ookouchi, Direct mediation of meta-stable supersymmetry breaking, Phys. Rev. D 75 (2007) 045022 [hep-ph/0612139] [SPIRES].ADSGoogle Scholar
  10. [10]
    A. Giveon and D. Kutasov, Stable and metastable vacua in brane constructions of SQCD, JHEP 02 (2008) 038 [arXiv:0710.1833] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    A. Giveon, D. Kutasov, J. McOrist and A.B. Royston, D-term supersymmetry breaking from branes, Nucl. Phys. B 822 (2009) 106 [arXiv:0904.0459] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  12. [12]
    D. Koschade, M. McGarrie and S. Thomas, Direct mediation and metastable supersymmetry breaking for SO(10), arXiv:0909.0233 [SPIRES].
  13. [13]
    S.A. Abel, J. Jaeckel and V.V. Khoze, Gaugino versus sfermion masses in gauge mediation, Phys. Lett. B 682 (2010) 441 [arXiv:0907.0658] [SPIRES].ADSGoogle Scholar
  14. [14]
    J. Barnard, Tree level metastability and gauge mediation in baryon deformed SQCD, JHEP 02 (2010) 035 [arXiv:0910.4047] [SPIRES].CrossRefGoogle Scholar
  15. [15]
    A. Giveon and D. Kutasov, Brane dynamics and gauge theory, Rev. Mod. Phys. 71 (1999) 983 [hep-th/9802067] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  16. [16]
    A. Giveon, J. McOrist and A.B. Royston, in progress.Google Scholar
  17. [17]
    A. Giveon and D. Kutasov, Gauge symmetry and supersymmetry breaking from intersecting branes, Nucl. Phys. B 778 (2007) 129 [hep-th/0703135] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  18. [18]
    A. Amariti, L. Girardello and A. Mariotti, Non-supersymmetric meta-stable vacua in SU(N) SQCD with adjoint matter, JHEP 12 (2006) 058 [hep-th/0608063] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    N. Craig, R. Essig, S. Franco, S. Kachru and G. Torroba, Dynamical supersymmetry breaking, with flavor, arXiv:0911.2467 [SPIRES].
  20. [20]
    S.A. Abel, C.-S. Chu, J. Jaeckel and V.V. Khoze, SUSY breaking by a metastable ground state: why the early universe preferred the non-supersymmetric vacuum, JHEP 01 (2007) 089 [hep-th/0610334] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  21. [21]
    N.J. Craig, P.J. Fox and J.G. Wacker, Reheating metastable O’Raifeartaigh models, Phys. Rev. D 75 (2007) 085006 [hep-th/0611006] [SPIRES].MathSciNetADSGoogle Scholar
  22. [22]
    W. Fischler, V. Kaplunovsky, C. Krishnan, L. Mannelli and M.A.C. Torres, Meta-stable supersymmetry breaking in a cooling universe, JHEP 03 (2007) 107 [hep-th/0611018] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    S.A. Abel, J. Jaeckel and V.V. Khoze, Why the early universe preferred the non-supersymmetric vacuum. II, JHEP 01 (2007) 015 [hep-th/0611130] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  24. [24]
    A. Katz, On the thermal history of calculable gauge mediation, JHEP 10 (2009) 054 [arXiv:0907.3930] [SPIRES].CrossRefADSGoogle Scholar
  25. [25]
    N. Seiberg, Electric-magnetic duality in supersymmetric non-Abelian gauge theories, Nucl. Phys. B 435 (1995) 129 [hep-th/9411149] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  26. [26]
    M.J. Duncan and L.G. Jensen, Exact tunneling solutions in scalar field theory, Phys. Lett. B 291 (1992) 109 [SPIRES].ADSGoogle Scholar
  27. [27]
    C. Cheung, A.L. Fitzpatrick and D. Shih, (Extra)Ordinary gauge mediation, JHEP 07 (2008) 054 [arXiv:0710.3585] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  28. [28]
    R. Essig, J.-F. Fortin, K. Sinha, G. Torroba and M.J. Strassler, Metastable supersymmetry breaking and multitrace deformations of SQCD, JHEP 03 (2009) 043 [arXiv:0812.3213] [SPIRES].CrossRefADSGoogle Scholar
  29. [29]
    A. Katz, Y. Shadmi and T. Volansky, Comments on the meta-stable vacuum in N f = N c SQCD and direct mediation, JHEP 07 (2007) 020 [arXiv:0705.1074] [SPIRES].CrossRefADSGoogle Scholar
  30. [30]
    L. Dolan and R. Jackiw, Symmetry behavior at finite temperature, Phys. Rev. D 9 (1974) 3320 [SPIRES].ADSGoogle Scholar
  31. [31]
    D. Kutasov, A comment on duality in N = 1 supersymmetric non-Abelian gauge theories, Phys. Lett. B 351 (1995) 230 [hep-th/9503086] [SPIRES].MathSciNetADSGoogle Scholar
  32. [32]
    D. Kutasov and A. Schwimmer, On duality in supersymmetric Yang-Mills theory, Phys. Lett. B 354 (1995) 315 [hep-th/9505004] [SPIRES].MathSciNetADSGoogle Scholar
  33. [33]
    D. Kutasov, A. Schwimmer and N. Seiberg, Chiral rings, singularity theory and electric-magnetic duality, Nucl. Phys. B 459 (1996) 455 [hep-th/9510222] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  34. [34]
    D. Kutasov, O. Lunin, J. McOrist and A.B. Royston, Dynamical vacuum selection in string theory, arXiv:0909.3319 [SPIRES].
  35. [35]
    N. Arkani-Hamed, M.A. Luty and J. Terning, Composite quarks and leptons from dynamical supersymmetry breaking without messengers, Phys. Rev. D 58 (1998) 015004 [hep-ph/9712389] [SPIRES].ADSGoogle Scholar
  36. [36]
    M.A. Luty and J. Terning, Improved single sector supersymmetry breaking, Phys. Rev. D 62 (2000) 075006 [hep-ph/9812290] [SPIRES].ADSGoogle Scholar
  37. [37]
    A. Giveon, D. Kutasov and O. Lunin, Spontaneous SUSY breaking in various dimensions, Nucl. Phys. B 822 (2009) 127 [arXiv:0904.2175] [SPIRES].CrossRefMathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Racah Institute of PhysicsThe Hebrew UniversityJerusalemIsrael

Personalised recommendations