AdS7/CFT6, Gauss-Bonnet gravity, and viscosity bound

Open Access


We study the relation between the causality and positivity of energy bounds for Gauss-Bonnet gravity in an AdS7 background. Requiring the group velocity of metastable states to be bounded by the speed of light places a bound on the value of Gauss-Bonnet coupling. To find the positivity of energy constraints we compute the parameters which determine the angular distribution of the energy flux in terms of three independent coefficients specifying the three-point function of the stress-energy tensor. We then relate the latter to the Weyl anomaly of the six-dimensional CFT and compute the anomaly holographically. The resulting upper bound on the Gauss-Bonnet coupling coincides with that from causality and results in a new bound on viscosity/entropy ratio.


AdS-CFT Correspondence Black Holes in String Theory 


  1. [1]
    D.M. Hofman and J. Maldacena, Conformal collider physics: energy and charge correlations, JHEP 05 (2008) 012 [arXiv:0803.1467] [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity bound violation in higher derivative gravity, Phys. Rev. D 77 (2008) 126006 [arXiv:0712.0805] [SPIRES].ADSGoogle Scholar
  3. [3]
    M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, The viscosity bound and causality violation, Phys. Rev. Lett. 100 (2008) 191601 [arXiv:0802.3318] [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    A. Buchel and R.C. Myers, Causality of holographic hydrodynamics, JHEP 08 (2009) 016 [arXiv:0906.2922] [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    D.M. Hofman, Higher derivative gravity, causality and positivity of energy in a UV complete QFT, Nucl. Phys. B 823 (2009) 174 [arXiv:0907.1625] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    A. Parnachev and S.S. Razamat, Comments on bounds on central charges in N = 1 superconformal theories, JHEP 07 (2009) 010 [arXiv:0812.0781] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  7. [7]
    A.D. Shapere and Y. Tachikawa, Central charges of N = 2 superconformal field theories in four dimensions, JHEP 09 (2008) 109 [arXiv:0804.1957] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  8. [8]
    P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    P. Kovtun, D.T. Son and A.O. Starinets, Holography and hydrodynamics: diffusion on stretched horizons, JHEP 10 (2003) 064 [hep-th/0309213] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  10. [10]
    Y. Kats and P. Petrov, Effect of curvature squared corrections in AdS on the viscosity of the dual gauge theory, JHEP 01 (2009) 044 [arXiv:0712.0743] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  11. [11]
    I.P. Neupane and N. Dadhich, Higher curvature gravity: entropy bound and causality violation, arXiv:0808.1919 [SPIRES].
  12. [12]
    R. Brustein and A.J.M. Medved, The ratio of shear viscosity to entropy density in generalized theories of gravity, Phys. Rev. D 79 (2009) 021901 [arXiv:0808.3498] [SPIRES].ADSGoogle Scholar
  13. [13]
    A. Adams, A. Maloney, A. Sinha and S.E. Vazquez, 1/N effects in non-relativistic gauge-gravity duality, JHEP 03 (2009) 097 [arXiv:0812.0166] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    A. Buchel, R.C. Myers and A. Sinha, Beyond η/s = 1/4π, JHEP 03 (2009) 084 [arXiv:0812.2521] [SPIRES].CrossRefADSGoogle Scholar
  15. [15]
    X.-H. Ge and S.-J. Sin, Shear viscosity, instability and the upper bound of the Gauss-Bonnet coupling constant, JHEP 05 (2009) 051 [arXiv:0903.2527] [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    S. Cremonini, K. Hanaki, J.T. Liu and P. Szepietowski, Higher derivative effects on η/s at finite chemical potential, Phys. Rev. D 80 (2009) 025002 [arXiv:0903.3244] [SPIRES].ADSGoogle Scholar
  17. [17]
    N. Banerjee and S. Dutta, Shear viscosity to entropy density ratio in six derivative gravity, JHEP 07 (2009) 024 [arXiv:0903.3925] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    X.-H. Ge, S.-J. Sin, S.-F. Wu and G.-H. Yang, Shear viscosity and instability from third order Lovelock gravity, Phys. Rev. D 80 (2009) 104019 [arXiv:0905.2675] [SPIRES].ADSGoogle Scholar
  19. [19]
    S.S. Pal, η/s at finite coupling, Phys. Rev. D 81 (2010) 045005 [arXiv:0910.0101] [SPIRES].ADSGoogle Scholar
  20. [20]
    F.-W. Shu, The quantum viscosity bound in Lovelock gravity, Phys. Lett. B 685 (2010) 325 [arXiv:0910.0607] [SPIRES].ADSGoogle Scholar
  21. [21]
    M.F. Paulos, Transport coefficients, membrane couplings and universality at extremality, JHEP 02 (2010) 067 [arXiv:0910.4602] [SPIRES].CrossRefGoogle Scholar
  22. [22]
    R.-G. Cai, Y. Liu and Y.-W. Sun, Transport coefficients from extremal Gauss-Bonnet black holes, arXiv:0910.4705 [SPIRES].
  23. [23]
    R.-G. Cai, Z.-Y. Nie, N. Ohta and Y.-W. Sun, Shear viscosity from Gauss-Bonnet gravity with a dilaton coupling, Phys. Rev. D 79 (2009) 066004 [arXiv:0901.1421] [SPIRES].ADSGoogle Scholar
  24. [24]
    S. Cremonini, J.T. Liu and P. Szepietowski, Higher derivative corrections to R-charged black holes: boundary counterterms and the mass-charge relation, arXiv:0910.5159 [SPIRES].
  25. [25]
    D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys. 12 (1971) 498 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  26. [26]
    B. Zumino, Gravity theories in more than four-dimensions, Phys. Rept. 137 (1986) 109 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  27. [27]
    R.C. Myers, Higher derivative gravity, surface terms and string theory, Phys. Rev. D 36 (1987) 392 [SPIRES].ADSGoogle Scholar
  28. [28]
    Q. Exirifard and M.M. Sheikh-Jabbari, Lovelock gravity at the crossroads of Palatini and metric formulations, Phys. Lett. B 661 (2008) 158 [arXiv:0705.1879] [SPIRES].MathSciNetADSGoogle Scholar
  29. [29]
    D.G. Boulware and S. Deser, String generated gravity models, Phys. Rev. Lett. 55 (1985) 2656 [SPIRES].CrossRefADSGoogle Scholar
  30. [30]
    R.-G. Cai, Gauss-Bonnet black holes in AdS spaces, Phys. Rev. D 65 (2002) 084014 [hep-th/0109133] [SPIRES].ADSGoogle Scholar
  31. [31]
    N.A. Sveshnikov and F.V. Tkachov, Jets and quantum field theory, Phys. Lett. B 382 (1996) 403 [hep-ph/9512370] [SPIRES].ADSGoogle Scholar
  32. [32]
    H. Osborn and A.C. Petkou, Implications of conformal invariance in field theories for general dimensions, Ann. Phys. 231 (1994) 311 [hep-th/9307010] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  33. [33]
    F. Bastianelli, S. Frolov and A.A. Tseytlin, Three-point correlators of stress tensors in maximally-supersymmetric conformal theories in D = 3 and D = 6, Nucl. Phys. B 578 (2000) 139 [hep-th/9911135] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  34. [34]
    J. Erdmenger and H. Osborn, Conserved currents and the energy-momentum tensor in conformally invariant theories for general dimensions, Nucl. Phys. B 483 (1997) 431 [hep-th/9605009] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  35. [35]
    H. Osborn, N = 1 superconformal symmetry in four-dimensional quantum field theory, Ann. Phys. 272 (1999) 243 [hep-th/9808041] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  36. [36]
    F. Bastianelli, S. Frolov and A.A. Tseytlin, Conformal anomaly of (2, 0) tensor multiplet in six dimensions and AdS/CFT correspondence, JHEP 02 (2000) 013 [hep-th/0001041] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  37. [37]
    M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  38. [38]
    M. Henningson and K. Skenderis, Holography and the Weyl anomaly, Fortsch. Phys. 48 (2000) 125 [hep-th/9812032] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  39. [39]
    S. Nojiri and S.D. Odintsov, On the conformal anomaly from higher derivative gravity in AdS/CFT correspondence, Int. J. Mod. Phys. A 15 (2000) 413 [hep-th/9903033] [SPIRES].MathSciNetADSGoogle Scholar
  40. [40]
    J. de Boer, M. Kulaxizi and A. Parnachev, Holographic Lovelock gravities and black holes, arXiv:0912.1877 [SPIRES].

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Jan de Boer
    • 1
  • Manuela Kulaxizi
    • 1
  • Andrei Parnachev
    • 2
  1. 1.Department of PhysicsUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.C.N. Yang Institute for Theoretical PhysicsStony Brook UniversityStony BrookU.S.A.

Personalised recommendations