Advertisement

Integrability and the AdS 3/CFT 2 correspondence

  • A. Babichenko
  • B. StefańskiJr.
  • K. Zarembo
Open Access
Article

Abstract

We investigate the AdS 3/CFT 2 correspondence for theories with 16 supercharges using the integrability approach. We construct Green-Schwarz actions for Type IIB strings on AdS 3 × S 3× M 4 where M 4 = T 4 or S 3 × S 1 using the coset approach. These actions are based on a \( {\mathbb{Z}_4} \) automorphism of the super-coset D(2, 1; α) × D(2, 1; α)/SO(1, 2) × SO(3)×SO(3). The equations of motion admit a representation in terms of a Lax connection, showing that the system is classically integrable. We present the finite gap equations for these actions. When α = 0, 1/2, 1 we propose a set of quantum Bethe equations valid at all values of the coupling. The AdS 3/CFT 2 duals contain novel massless modes whose role remains to be explored.

Keywords

AdS-CFT Correspondence Integrable Equations in Physics Bethe Ansatz Sigma Models 

References

  1. [1]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [SPIRES].MathSciNetADSGoogle Scholar
  2. [2]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].MATHMathSciNetADSGoogle Scholar
  3. [3]
    A. Giveon, D. Kutasov and N. Seiberg, Comments on string theory on AdS 3, Adv. Theor. Math. Phys. 2 (1998) 733 [hep-th/9806194] [SPIRES].MATHMathSciNetGoogle Scholar
  4. [4]
    S. Elitzur, O. Feinerman, A. Giveon and D. Tsabar, String theory on AdS 3 × S 3 × S 3 × S 1, Phys. Lett. B 449 (1999) 180 [hep-th/9811245] [SPIRES].MathSciNetADSGoogle Scholar
  5. [5]
    J.M. Maldacena and H. Ooguri, Strings in AdS 3 and SL(2,R) WZW model. I, J. Math. Phys. 42 (2001) 2929 [hep-th/0001053] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  6. [6]
    J.M. Maldacena, H. Ooguri and J. Son, Strings in AdS 3 and the SL(2,R) WZW model. II: Euclidean black hole, J. Math. Phys. 42 (2001) 2961 [hep-th/0005183] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  7. [7]
    J.M. Maldacena and H. Ooguri, Strings in AdS 3 and the SL(2,R) WZW model. III: Correlation functions, Phys. Rev. D 65 (2002) 106006 [hep-th/0111180] [SPIRES].MathSciNetADSGoogle Scholar
  8. [8]
    N. Berkovits, C. Vafa and E. Witten, Conformal field theory of AdS background with Ramond-Ramond flux, JHEP 03 (1999) 018 [hep-th/9902098] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    J. Rahmfeld and A. Rajaraman, The GS string action on AdS 3 × S 3 with Ramond-Ramond charge, Phys. Rev. D 60 (1999) 064014 [hep-th/9809164] [SPIRES].MathSciNetADSGoogle Scholar
  10. [10]
    J. Park and S.-J. Rey, Green-Schwarz superstring on AdS 3 × S 3, JHEP 01 (1999) 001 [hep-th/9812062] [SPIRES].MathSciNetADSGoogle Scholar
  11. [11]
    R.R. Metsaev and A.A. Tseytlin, Superparticle and superstring in AdS 3 × S 3 Ramond-Ramond background in light-cone gauge, J. Math. Phys. 42 (2001) 2987 [hep-th/0011191] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  12. [12]
    B. Chen, Y.-L. He, P. Zhang and X.-C. Song, Flat currents of the Green-Schwarz superstrings in AdS 5 × S 1 and AdS 3 × S 3 backgrounds, Phys. Rev. D 71 (2005) 086007 [hep-th/0503089] [SPIRES].MathSciNetADSGoogle Scholar
  13. [13]
    I. Adam, A. Dekel, L. Mazzucato and Y. Oz, Integrability of type-II superstrings on Ramond-Ramond backgrounds in various dimensions, JHEP 06 (2007) 085 [hep-th/0702083] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    J.R. David and B. Sahoo, Giant magnons in the D1-D5 system, JHEP 07 (2008) 033 [arXiv:0804.3267] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  15. [15]
    I. Bena, J. Polchinski and R. Roiban, Hidden symmetries of the AdS 5 × S 5 superstring, Phys. Rev. D 69 (2004) 046002 [hep-th/0305116] [SPIRES].MathSciNetADSGoogle Scholar
  16. [16]
    V.A. Kazakov, A. Marshakov, J.A. Minahan and K. Zarembo, Classical/quantum integrability in AdS/CFT, JHEP 05 (2004) 024 [hep-th/0402207] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  17. [17]
    N. Beisert, V.A. Kazakov, K. Sakai and K. Zarembo, The algebraic curve of classical superstrings on AdS 5 × S 5, Commun. Math. Phys. 263 (2006) 659 [hep-th/0502226] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  18. [18]
    N. Beisert and M. Staudacher, Long-range PSU(2, 2|4) Bethe ansätze for gauge theory and strings, Nucl. Phys. B 727 (2005) 1 [hep-th/0504190] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    M. Staudacher, The factorized S-matrix of CFT/AdS, JHEP 05 (2005) 054 [hep-th/0412188] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  20. [20]
    N. Beisert, The SU(2|2) dynamic S-matrix, Adv. Theor. Math. Phys. 12 (2008) 945 [hep-th/0511082] [SPIRES].MathSciNetGoogle Scholar
  21. [21]
    N. Gromov and P. Vieira, The AdS 4/CFT 3 algebraic curve, JHEP 02 (2009) 040 [arXiv:0807.0437] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  22. [22]
    N. Gromov and P. Vieira, The all loop AdS 4/CFT 3 Bethe ansatz, JHEP 01 (2009) 016 [arXiv:0807.0777] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    R.A. Janik, The AdS 5 × S 5 superstring worldsheet S-matrix and crossing symmetry, Phys. Rev. D 73 (2006) 086006 [hep-th/0603038] [SPIRES].MathSciNetADSGoogle Scholar
  24. [24]
    G. Arutyunov, S. Frolov and M. Staudacher, Bethe ansatz for quantum strings, JHEP 10 (2004) 016 [hep-th/0406256] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  25. [25]
    N. Gromov, V. Kazakov and P. Vieira, Exact spectrum of anomalous dimensions of planar N = 4 supersymmetric Yang-Mills theory, Phys. Rev. Lett. 103 (2009) 131601 [arXiv:0901.3753] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  26. [26]
    D. Bombardelli, D. Fioravanti and R. Tateo, Thermodynamic Bethe ansatz for planar AdS/CFT: a proposal, J. Phys. A 42 (2009) 375401 [arXiv:0902.3930] [SPIRES].MathSciNetGoogle Scholar
  27. [27]
    N. Gromov, V. Kazakov, A. Kozak and P. Vieira, Exact spectrum of anomalous dimensions of planar N = 4 supersymmetric Yang-Mills theory: TBA and excited states, Lett. Math. Phys. 91 (2010) 265 [arXiv:0902.4458] [SPIRES].CrossRefGoogle Scholar
  28. [28]
    G. Arutyunov and S. Frolov, Thermodynamic Bethe ansatz for the AdS 5 × S 5 mirror model, JHEP 05 (2009) 068 [arXiv:0903.0141] [SPIRES].CrossRefADSGoogle Scholar
  29. [29]
    N. Gromov, Y-system and quasi-classical strings, JHEP 01 (2010) 112 [arXiv:0910.3608] [SPIRES].CrossRefGoogle Scholar
  30. [30]
    R.R. Metsaev and A.A. Tseytlin, Type IIB superstring action in AdS 5 × S 5 background, Nucl. Phys. B 533 (1998) 109 [hep-th/9805028] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  31. [31]
    G. Arutyunov and S. Frolov, Superstrings on AdS 4 × CP 3 as a coset σ-model, JHEP 09 (2008) 129 [arXiv:0806.4940] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  32. [32]
    B. Stefański jr., Green-Schwarz action for type IIA strings on AdS 4 × CP 3, Nucl. Phys. B 808 (2009) 80 [arXiv:0806.4948] [SPIRES].ADSGoogle Scholar
  33. [33]
    J. Gomis, D. Sorokin and L. Wulff, The complete AdS 4 xCP 3 superspace for the type IIA superstring and D-branes, JHEP 03 (2009) 015 [arXiv:0811.1566] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  34. [34]
    N. Berkovits, M. Bershadsky, T. Hauer, S. Zhukov and B. Zwiebach, Superstring theory on AdS 2 × S 2 as a coset supermanifold, Nucl. Phys. B 567 (2000) 61 [hep-th/9907200] [SPIRES].CrossRefMathSciNetGoogle Scholar
  35. [35]
    I. Pesando, The GS type IIB superstring action on AdS 3 × S 3 × T 4, JHEP 02 (1999) 007 [hep-th/9809145] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  36. [36]
    P.M. Cowdall and P.K. Townsend, Gauged supergravity vacua from intersecting branes, Phys. Lett. B 429 (1998) 281 [Erratum ibid. B 434 (1998) 458] [hep-th/9801165] [SPIRES].MathSciNetADSGoogle Scholar
  37. [37]
    H.J. Boonstra, B. Peeters and K. Skenderis, Brane intersections, anti-de Sitter spacetimes and dual superconformal theories, Nucl. Phys. B 533 (1998) 127 [hep-th/9803231] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  38. [38]
    J.P. Gauntlett, R.C. Myers and P.K. Townsend, Supersymmetry of rotating branes, Phys. Rev. D 59 (1999) 025001 [hep-th/9809065] [SPIRES].MathSciNetADSGoogle Scholar
  39. [39]
    J. de Boer, A. Pasquinucci and K. Skenderis, AdS/CFT dualities involving large 2D N = 4 superconformal symmetry, Adv. Theor. Math. Phys. 3 (1999) 577 [hep-th/9904073] [SPIRES].MATHMathSciNetGoogle Scholar
  40. [40]
    S. Gukov, E. Martinec, G.W. Moore and A. Strominger, The search for a holographic dual to AdS 3 × S 3 × S 3 × S 1, Adv. Theor. Math. Phys. 9 (2005) 435 [hep-th/0403090] [SPIRES].MATHMathSciNetGoogle Scholar
  41. [41]
    A. Giveon and A. Pakman, More on superstrings in AdS 3 × N, JHEP 03 (2003) 056 [hep-th/0302217] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  42. [42]
    V.G. Kac, A sketch of Lie superalgebra theory, Commun. Math. Phys. 53 (1977) 31 [SPIRES].MATHCrossRefADSGoogle Scholar
  43. [43]
    L. Frappat, P. Sorba and A. Sciarrino, Dictionary on Lie superalgebras, hep-th/9607161 [SPIRES].
  44. [44]
    H. Lü and J.F. Vazquez-Poritz, Penrose limits of non-standard brane intersections, Class. Quant. Grav. 19 (2002) 4059 [hep-th/0204001] [SPIRES].MATHCrossRefADSGoogle Scholar
  45. [45]
    M.B. Green and J.H. Schwarz, Covariant description of superstrings, Phys. Lett. B 136 (1984) 367 [SPIRES].ADSGoogle Scholar
  46. [46]
    M. Henneaux and L. Mezincescu, A sigma model interpretation of Green-Schwarz covariant superstring action, Phys. Lett. B 152 (1985) 340 [SPIRES].MathSciNetADSGoogle Scholar
  47. [47]
    I.N. McArthur, κ-symmetry of Green-Schwarz actions in coset superspaces, Nucl. Phys. B 573 (2000) 811 [hep-th/9908045] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  48. [48]
    G. Arutyunov and S. Frolov, Foundations of the AdS 5 × S 5 superstring. Part I, J. Phys. A 42 (2009) 254003 [arXiv:0901.4937] [SPIRES].MathSciNetADSGoogle Scholar
  49. [49]
    R. Roiban and W. Siegel, Superstrings on AdS 5 × S 5 supertwistor space, JHEP 11 (2000) 024 [hep-th/0010104] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  50. [50]
    A. Cagnazzo, D. Sorokin and L. Wulff, String instanton in AdS 4 × CP 3, arXiv:0911.5228 [SPIRES].
  51. [51]
    M. Cvetič, H. Lü, C.N. Pope and K.S. Stelle, T-duality in the Green-Schwarz formalism and the massless/massive IIA duality map, Nucl. Phys. B 573 (2000) 149 [hep-th/9907202] [SPIRES].ADSGoogle Scholar
  52. [52]
    D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from N = 4 super Yang-Mills, JHEP 04 (2002) 013 [hep-th/0202021] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  53. [53]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, A semi-classical limit of the gauge/string correspondence, Nucl. Phys. B 636 (2002) 99 [hep-th/0204051] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  54. [54]
    A. Parnachev and A.V. Ryzhov, Strings in the near plane wave background and AdS/CFT, JHEP 10 (2002) 066 [hep-th/0208010] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  55. [55]
    C.G. Callan jr. et al., Quantizing string theory in AdS 5 × S 5 : beyond the pp-wave, Nucl. Phys. B 673 (2003) 3 [hep-th/0307032] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  56. [56]
    C.G. Callan jr., T. McLoughlin and I. Swanson, Holography beyond the Penrose limit, Nucl. Phys. B 694 (2004) 115 [hep-th/0404007] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  57. [57]
    B.-H. Lee, R.R. Nayak, K.L. Panigrahi and C. Park, On the giant magnon and spike solutions for strings on AdS 3 × S 3, JHEP 06 (2008) 065 [arXiv:0804.2923] [SPIRES].MathSciNetADSGoogle Scholar
  58. [58]
    N. Beisert and B.I. Zwiebel, On symmetry enhancement in the PSU(1, 1|2) sector of N = 4 SYM, JHEP 10 (2007) 031 [arXiv:0707.1031] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  59. [59]
    G. Arutyunov, S. Frolov, J. Plefka and M. Zamaklar, The off-shell symmetry algebra of the light-cone AdS 5 × S 5 superstring, J. Phys. A 40 (2007) 3583 [hep-th/0609157] [SPIRES].MathSciNetADSGoogle Scholar
  60. [60]
    K. Zarembo, Worldsheet spectrum in AdS 4/CFT 3 correspondence, JHEP 04 (2009) 135 [arXiv:0903.1747] [SPIRES].CrossRefADSGoogle Scholar
  61. [61]
    P. Sundin, On the worldsheet theory of the type IIA AdS 4 × CP 3 superstring, arXiv:0909.0697 [SPIRES].
  62. [62]
    S. Novikov, S.V. Manakov, L.P. Pitaevsky and V.E. Zakharov, Theory of solitons. The inverse scattering method, Contemporary Soviet Mathematics, Consultants Bureau, New York U.S.A. (1984) [SPIRES].Google Scholar
  63. [63]
    V.A. Kazakov and K. Zarembo, Classical/quantum integrability in non-compact sector of AdS/CFT, JHEP 10 (2004) 060 [hep-th/0410105] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  64. [64]
    N. Beisert, V.A. Kazakov and K. Sakai, Algebraic curve for the SO(6) sector of AdS/CFT, Commun. Math. Phys. 263 (2006) 611 [hep-th/0410253] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  65. [65]
    S. Schäfer-Nameki, The algebraic curve of 1-loop planar N = 4 SYM, Nucl. Phys. B 714 (2005) 3 [hep-th/0412254] [SPIRES].MATHCrossRefADSGoogle Scholar
  66. [66]
    N. Dorey and B. Vicedo, On the dynamics of finite-gap solutions in classical string theory, JHEP 07 (2006) 014 [hep-th/0601194] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  67. [67]
    N. Dorey and B. Vicedo, A symplectic structure for string theory on integrable backgrounds, JHEP 03 (2007) 045 [hep-th/0606287] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  68. [68]
    K. Zarembo, Semiclassical Bethe ansatz and AdS/CFT, Comptes Rendus Physique 5 (2004) 1081 [Fortsch. Phys. 53 (2005) 647] [hep-th/0411191] [SPIRES].MathSciNetADSGoogle Scholar
  69. [69]
    L.D. Faddeev and L.A. Takhtajan, Hamiltonian methods in the theory of solitons, Springer Series In Soviet Mathematics, Springer, Berlin Germany (1987) [SPIRES].MATHGoogle Scholar
  70. [70]
    V.K. Dobrev and V.B. Petkova, Group theoretical approach to extended conformal supersymmetry: function space realizations and invariant differential operators, Fortsch. Phys. 35 (1987) 537 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  71. [71]
    I. Penkov and V. Serganova, Representations of classical Lie superalgebras of type I, Indag. Math. 3 (1992) 419.MATHCrossRefMathSciNetGoogle Scholar
  72. [72]
    N. Beisert, V.A. Kazakov, K. Sakai and K. Zarembo, Complete spectrum of long operators in N = 4 SYM at one loop, JHEP 07 (2005) 030 [hep-th/0503200] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  73. [73]
    N. Gromov and P. Vieira, Complete 1-loop test of AdS/CFT, JHEP 04 (2008) 046 [arXiv:0709.3487] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  74. [74]
    B. Vicedo, Semiclassical quantisation of finite-gap strings, JHEP 06 (2008) 086 [arXiv:0803.1605] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  75. [75]
    N. Beisert, R. Hernandez and E. Lopez, A crossing-symmetric phase for AdS 5 × S 5 strings, JHEP 11 (2006) 070 [hep-th/0609044] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  76. [76]
    N. Beisert, B. Eden and M. Staudacher, Transcendentality and crossing, J. Stat. Mech. (2007) P01021 [hep-th/0610251] [SPIRES].
  77. [77]
    N. Dorey, D.M. Hofman and J.M. Maldacena, On the singularities of the magnon S-matrix, Phys. Rev. D 76 (2007) 025011 [hep-th/0703104] [SPIRES].MathSciNetADSGoogle Scholar
  78. [78]
    G. Arutyunov and S. Frolov, The dressing factor and crossing equations, J. Phys. A 42 (2009) 425401 [arXiv:0904.4575] [SPIRES].MathSciNetADSGoogle Scholar
  79. [79]
    D. Volin, Minimal solution of the AdS/CFT crossing equation, J. Phys. A 42 (2009) 372001 [arXiv:0904.4929] [SPIRES].MathSciNetGoogle Scholar
  80. [80]
    L.D. Faddeev and N.Y. Reshetikhin, Integrability of the principal chiral field model in (1 + 1)-dimension, Ann. Phys. 167 (1986) 227 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  81. [81]
    N. Gromov, V. Kazakov, K. Sakai and P. Vieira, Strings as multi-particle states of quantum σ-models, Nucl. Phys. B 764 (2007) 15 [hep-th/0603043] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  82. [82]
    N. Gromov and V. Kazakov, Asymptotic Bethe ansatz from string σ-model on S 3 × R, Nucl. Phys. B 780 (2007) 143 [hep-th/0605026] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  83. [83]
    N. Gromov, V. Kazakov and P. Vieira, Classical limit of quantum σ-models from Bethe ansatz, PoS(SOLVAY)005 [hep-th/0703137] [SPIRES].
  84. [84]
    L. Sommovigo, Penrose limit of AdS 3 × S 3 × S 3 × S 1 and its associated σ-model, JHEP 07 (2003) 035 [hep-th/0305151] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  85. [85]
    M. Kruczenski, Spin chains and string theory, Phys. Rev. Lett. 93 (2004) 161602 [hep-th/0311203] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  86. [86]
    M. Kruczenski, A.V. Ryzhov and A.A. Tseytlin, Large spin limit of AdS 5 ×S 5 string theory and low energy expansion of ferromagnetic spin chains, Nucl. Phys. B 692 (2004) 3 [hep-th/0403120] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  87. [87]
    R. Hernandez and E. Lopez, The SU(3) spin chain σ-model and string theory, JHEP 04 (2004) 052 [hep-th/0403139] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  88. [88]
    B. Stefański jr. and A.A. Tseytlin, Large spin limits of AdS/CFT and generalized Landau-Lifshitz equations, JHEP 05 (2004) 042 [hep-th/0404133] [SPIRES].CrossRefADSGoogle Scholar
  89. [89]
    M. Kruczenski and A.A. Tseytlin, Semiclassical relativistic strings in S 5 and long coherent operators in N = 4 SYM theory, JHEP 09 (2004) 038 [hep-th/0406189] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  90. [90]
    R. Hernandez and E. Lopez, Spin chain σ-models with fermions, JHEP 11 (2004) 079 [hep-th/0410022] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  91. [91]
    B. Stefański jr. and A.A. Tseytlin, Super spin chain coherent state actions and AdS 5 × S 5 superstring, Nucl. Phys. B 718 (2005) 83 [hep-th/0503185] [SPIRES].ADSGoogle Scholar
  92. [92]
    B. Stefański jr., Landau-Lifshitz σ-models, fermions and the AdS/CFT correspondence, JHEP 07 (2007) 009 [arXiv:0704.1460] [SPIRES].CrossRefADSGoogle Scholar
  93. [93]
    J.M. Maldacena and A. Strominger, AdS 3 black holes and a stringy exclusion principle, JHEP 12 (1998) 005 [hep-th/9804085] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  94. [94]
    N. Seiberg and E. Witten, The D1/D5 system and singular CFT, JHEP 04 (1999) 017 [hep-th/9903224] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  95. [95]
    F. Larsen and E.J. Martinec, U(1) charges and moduli in the D1-D5 system, JHEP 06 (1999) 019 [hep-th/9905064] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  96. [96]
    G.E. Arutyunov and S.A. Frolov, Four graviton scattering amplitude from S N R 8 supersymmetric orbifold σ-model, Nucl. Phys. B 524 (1998) 159 [hep-th/9712061] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  97. [97]
    O. Lunin and S.D. Mathur, Three-point functions for M N/S N orbifolds with N = 4 supersymmetry, Commun. Math. Phys. 227 (2002) 385 [hep-th/0103169] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  98. [98]
    A. Jevicki, M. Mihailescu and S. Ramgoolam, Gravity from CFT on S N(X): symmetries and interactions, Nucl. Phys. B 577 (2000) 47 [hep-th/9907144] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  99. [99]
    Y. Hikida and Y. Sugawara, Superstrings on PP-wave backgrounds and symmetric orbifolds, JHEP 06 (2002) 037 [hep-th/0205200] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  100. [100]
    O. Lunin and S.D. Mathur, Rotating deformations of AdS 3 × S 3 , the orbifold CFT and strings in the pp-wave limit, Nucl. Phys. B 642 (2002) 91 [hep-th/0206107] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  101. [101]
    J. Gomis, L. Motl and A. Strominger, pp-wave/CFT 2 duality, JHEP 11 (2002) 016 [hep-th/0206166] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  102. [102]
    E. Gava and K.S. Narain, Proving the pp-wave/CFT 2 duality, JHEP 12 (2002) 023 [hep-th/0208081] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  103. [103]
    J. de Boer, H. Ooguri, H. Robins and J. Tannenhauser, String theory on AdS 3, JHEP 12 (1998) 026 [hep-th/9812046] [SPIRES].CrossRefGoogle Scholar
  104. [104]
    J. de Boer, H. Ooguri, H. Robins and J. Tannenhauser, String theory on AdS 3, JHEP 12 (1998) 026 [hep-th/9812046] [SPIRES].CrossRefGoogle Scholar
  105. [105]
    S.K. Ashok, R. Benichou and J. Troost, Asymptotic symmetries of string theory on AdS 3 × S 3 with Ramond-Ramond fluxes, JHEP 10 (2009) 051 [arXiv:0907.1242] [SPIRES].CrossRefADSGoogle Scholar
  106. [106]
    A. Pakman, L. Rastelli and S.S. Razamat, A spin chain for the symmetric product CFT 2, arXiv:0912.0959 [SPIRES].

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • A. Babichenko
    • 1
    • 2
  • B. StefańskiJr.
    • 3
  • K. Zarembo
    • 4
    • 5
    • 6
  1. 1.Department of Particle Physics and AstrophysicsWeizmann Institute of ScienceRehovotIsrael
  2. 2.Department of Applied MathematicsHolon Institute of TechnologyHolon58102Israel
  3. 3.Centre for Mathematical ScienceCity University LondonLondonU.K.
  4. 4.CNRS — Laboratoire de Physique Théorique, École Normale SupérieureParisFrance
  5. 5.Department of Physics and AstronomyUppsala UniversityUppsalaSweden
  6. 6.ITEPMoscowRussia

Personalised recommendations