Geometry of the Grosse-Wulkenhaar model



We analyze properties of a family of finite-matrix spaces obtained by a truncation of the Heisenberg algebra and we show that it has a three-dimensional, noncommutative and curved geometry. Further, we demonstrate that the Heisenberg algebra can be described as a two-dimensional hyperplane embedded in this space. As a consequence of the given construction we show that the Grosse-Wulkenhaar (renormalizable) action can be interpreted as the action for the scalar field on a curved background space. We discuss the generalization to four dimensions.


Non-Commutative Geometry Nonperturbative Effects Differential and Algebraic Geometry 


  1. [1]
    J. Medina and D. O’Connor, Scalar field theory on fuzzy S 4, JHEP 11 (2003) 051 [hep-th/0212170] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  2. [2]
    H. Grosse and H. Steinacker, Finite gauge theory on fuzzy CP 2, Nucl. Phys. B 707 (2005) 145 [hep-th/0407089] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  3. [3]
    W. Behr, F. Meyer and H. Steinacker, Gauge theory on fuzzy S 2 × S 2 and regularization on noncommutative R 4, JHEP 07 (2005) 040 [hep-th/0503041] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  4. [4]
    I. Chepelev and R. Roiban, Convergence theorem for non-commutative Feynman graphs and renormalization, JHEP 03 (2001) 001 [hep-th/0008090] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    I. Chepelev and R. Roiban, Renormalization of quantum field theories on noncommutative R d . I: Scalars, JHEP 05 (2000) 037 [hep-th/9911098] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    S. Cho, R. Hinterding, J. Madore and H. Steinacker, Finite field theory on noncommutative geometries, Int. J. Mod. Phys. D 9 (2000) 161 [hep-th/9903239] [SPIRES].MathSciNetADSGoogle Scholar
  7. [7]
    H. Grosse and R. Wulkenhaar, Renormalisation of ϕ 4 theory on noncommutative R 2 in the matrix base, JHEP 12 (2003) 019 [hep-th/0307017] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  8. [8]
    H. Grosse and R. Wulkenhaar, Renormalisation of ϕ 4 theory on noncommutative R 4 in the matrix base, Commun. Math. Phys. 256 (2005) 305 [hep-th/0401128] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  9. [9]
    H. Grosse and R. Wulkenhaar, Renormalisation of ϕ 4 -theory on non-commutative R 4 to all orders, Lett. Math. Phys. 71 (2005) 13 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  10. [10]
    E. Langmann and R.J. Szabo, Duality in scalar field theory on noncommutative phase spaces, Phys. Lett. B 533 (2002) 168 [hep-th/0202039] [SPIRES].MathSciNetADSGoogle Scholar
  11. [11]
    J. Madore, An introduction to noncommutative differential geometry and its physical applications, Lond. Math. Soc. Lect. Note Ser. 257 (2000) 1 [SPIRES].Google Scholar
  12. [12]
    A.P. Polychronakos, Noncommutative Fluids, arXiv:0706.1095 [SPIRES].
  13. [13]
    T. Holstein and H. Primakoff, Field dependence of the intrinsic domain magnetization of a ferromagnet, Phys. Rev. 58 (1940) 1098 [SPIRES].MATHCrossRefADSGoogle Scholar
  14. [14]
    G. Fiore and J. Madore, Leibniz Rules and Reality Conditions, Eur. Phys. J. C 17 (2000) 359 [math/9806071].CrossRefMathSciNetADSGoogle Scholar
  15. [15]
    J. Madore, The fuzzy sphere, Class. Quant. Grav. 9 (1992) 69 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  16. [16]
    H. Grosse and J. Madore, A Noncommutative version of the Schwinger model, Phys. Lett. B 283 (1992) 218 [SPIRES].MathSciNetADSGoogle Scholar
  17. [17]
    A.Y. Alekseev, A. Recknagel and V. Schomerus, Brane dynamics in background fluxes and non-commutative geometry, JHEP 05 (2000) 010 [hep-th/0003187] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  18. [18]
    D. Karabali, V.P. Nair and A.P. Polychronakos, Spectrum of Schroedinger field in a noncommutative magnetic monopole, Nucl. Phys. B 627 (2002) 565 [hep-th/0111249] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    H. Steinacker, Quantized gauge theory on the fuzzy sphere as random matrix model, Nucl. Phys. B 679 (2004) 66 [hep-th/0307075] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  20. [20]
    D. O’Connor and B. Ydri, Monte Carlo simulation of a NC gauge theory on the fuzzy sphere, JHEP 11 (2006) 016 [hep-lat/0606013] [SPIRES].CrossRefGoogle Scholar
  21. [21]
    S. Deser, General Relativity and the Divergence Problem in Quantum Field Theory, Rev. Mod. Phys. 29 (1957) 417 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  22. [22]
    C.J. Isham, A. Salam and J.A. Strathdee, Infinity suppression gravity modified quantum electrodynamics, Phys. Rev. D 3 (1971) 1805 [SPIRES].MathSciNetADSGoogle Scholar
  23. [23]
    J. Madore and J. Mourad, Quantum space-time and classical gravity, J. Math. Phys. 39 (1998) 423 [gr-qc/9607060] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of BelgradeBelgradeSerbia
  2. 2.Institute for Theoretical PhysicsVienna University of TechnologyViennaAustria

Personalised recommendations