Advertisement

Schrödinger invariant solutions of M-theory with enhanced supersymmetry

  • Jaehoon Jeong
  • Hee-Cheol Kim
  • Sangmin LeeEmail author
  • Eoin Ó Colgáin
  • Hossein Yavartanoo
Article

Abstract

We find the most general solution of 11-dimensional supergravity compatible with \( \mathcal{N} = 2 \) super-Schrödinger symmetry with six supercharges and \( {\text{SU}}(2) \times {\text{SU}}(2) \times {\text{U}}(1) \times {\mathbb{Z}_2} \) global symmetry. It can be viewed as a one-parameter extension of a recently constructed solution by Ooguri and Park. Our original motivation was to find the gravity dual of the non-relativistic ABJM theory. But, our analysis shows that no such solution exists within the reach of our assumptions. We discuss possible reasons for the non-existence of the desired solution. We also uplift a super-Schrödinger solution in IIB supergravity of Donos and Gauntlett to 11-dimension and comment on its properties.

Keywords

AdS-CFT Correspondence Chern-Simons Theories 

References

  1. [1]
    D.T. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the Schroedinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] [SPIRES].MathSciNetADSGoogle Scholar
  2. [2]
    K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  3. [3]
    Y. Nakayama, M. Sakaguchi and K. Yoshida, Non-Relativistic M2-brane Gauge Theory and New Superconformal Algebra, JHEP 04 (2009) 096 [arXiv:0902.2204] [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    K.-M. Lee, S. Lee and S. Lee, Nonrelativistic Superconformal M2-Brane Theory, JHEP 09 (2009) 030 [arXiv:0902.3857] [SPIRES].CrossRefGoogle Scholar
  5. [5]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    I. Bena, The M-theory dual of a 3 dimensional theory with reduced supersymmetry, Phys. Rev. D 62 (2000) 126006 [hep-th/0004142] [SPIRES].MathSciNetADSGoogle Scholar
  7. [7]
    I. Bena and N.P. Warner, A harmonic family of dielectric flow solutions with maximal supersymmetry, JHEP 12 (2004) 021 [hep-th/0406145] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  8. [8]
    H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP 10 (2004) 025 [hep-th/0409174] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    K. Hosomichi, K.-M. Lee, S. Lee, S. Lee and J. Park, N = 5, 6 Superconformal Chern-Simons Theories and M2-branes on Orbifolds, JHEP 09 (2008) 002 [arXiv:0806.4977] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  10. [10]
    J. Gomis, D. Rodriguez-Gomez, M. Van Raamsdonk and H. Verlinde, A Massive Study of M2-brane Proposals, JHEP 09 (2008) 113 [arXiv:0807.1074] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    C. Duval and P.A. Horvathy, On Schrödinger superalgebras, J. Math. Phys. 35 (1994) 2516 [hep-th/0508079] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  12. [12]
    M. Leblanc, G. Lozano and H. Min, Extended superconformal Galilean symmetry in Chern-Simons matter systems, Ann. Phys. 219 (1992) 328 [hep-th/9206039] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  13. [13]
    A. Galajinsky and I. Masterov, Remark on quantum mechanics with N = 2 Schrödinger supersymmetry, Phys. Lett. B 675 (2009) 116 [arXiv:0902.2910] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    H. Ooguri and C.-S. Park, Supersymmetric non-relativistic geometries in M-theory, Nucl. Phys. B 824 (2010) 136 [arXiv:0905.1954] [SPIRES].CrossRefMathSciNetGoogle Scholar
  15. [15]
    J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Supersymmetric AdS 5 solutions of M-theory, Class. Quant. Grav. 21 (2004) 4335 [hep-th/0402153] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  16. [16]
    E.O. Colgain and H. Yavartanoo, NR CFT 3 duals in M-theory, JHEP 09 (2009) 002 [arXiv:0904.0588] [SPIRES].CrossRefGoogle Scholar
  17. [17]
    Y. Nakayama and S.-J. Rey, Observables and Correlators in Nonrelativistic ABJM Theory, JHEP 08 (2009) 029 [arXiv:0905.2940] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    N. Bobev, A. Kundu and K. Pilch, Supersymmetric IIB Solutions with Schródinger Symmetry, JHEP 07 (2009) 107 [arXiv:0905.0673] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    A. Donos and J.P. Gauntlett, Schrödinger invariant solutions of type IIB with enhanced supersymmetry, JHEP 10 (2009) 073 [arXiv:0907.1761] [SPIRES].CrossRefGoogle Scholar
  20. [20]
    C.P. Herzog, M. Rangamani and S.F. Ross, Heating up Galilean holography, JHEP 11 (2008) 080 [arXiv:0807.1099] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  21. [21]
    J. Maldacena, D. Martelli and Y. Tachikawa, Comments on string theory backgrounds with non-relativistic conformal symmetry, JHEP 10 (2008) 072 [arXiv:0807.1100] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  22. [22]
    A. Adams, K. Balasubramanian and J. McGreevy, Hot Spacetimes for Cold Atoms, JHEP 11 (2008) 059 [arXiv:0807.1111] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    J.P. Gauntlett, S. Kim, O. Varela and D. Waldram, Consistent supersymmetric Kaluza–Klein truncations with massive modes, JHEP 04 (2009) 102 [arXiv:0901.0676] [SPIRES].CrossRefADSGoogle Scholar
  24. [24]
    E. O’ Colgain, O. Varela and H. Yavartanoo, Non-relativistic M-theory solutions based on Kähler-Einstein spaces, JHEP 07 (2009) 081 [arXiv:0906.0261] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  25. [25]
    Y. Nishida and D.T. Son, Nonrelativistic conformal field theories, Phys. Rev. D 76 (2007) 086004 [arXiv:0706.3746] [SPIRES].MathSciNetADSGoogle Scholar
  26. [26]
    M. Blau, J. Hartong and B. Rollier, Geometry of Schroedinger Space-Times, Global Coordinates and Harmonic Trapping, JHEP 07 (2009) 027 [arXiv:0904.3304] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  27. [27]
    J.M. Figueroa-O’Farrill, On the supersymmetries of anti de Sitter vacua, Class. Quant. Grav. 16 (1999) 2043 [hep-th/9902066] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  28. [28]
    J.P. Gauntlett and S. Pakis, The geometry of D = 11 Killing spinors, JHEP 04 (2003) 039 [hep-th/0212008] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  29. [29]
    J.P. Gauntlett, J.B. Gutowski and S. Pakis, The geometry of D = 11 null Killing spinors, JHEP 12 (2003) 049 [hep-th/0311112] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  30. [30]
    A. Donos and J.P. Gauntlett, Solutions of type IIB and D = 11 supergravity with Schrödinger(z) symmetry, JHEP 07 (2009) 042 [arXiv:0905.1098] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  31. [31]
    A. Donos and J.P. Gauntlett, Supersymmetric solutions for non-relativistic holography, JHEP 03 (2009) 138 [arXiv:0901.0818] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  32. [32]
    S.A. Hartnoll and K. Yoshida, Families of IIB duals for nonrelativistic CFTs, JHEP 12 (2008) 071 [arXiv:0810.0298] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  33. [33]
    J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Sasaki-Einstein metrics on S 2 × S 3, Adv. Theor. Math. Phys. 8 (2004) 711 [hep-th/0403002] [SPIRES].zbMATHMathSciNetGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Jaehoon Jeong
    • 1
  • Hee-Cheol Kim
    • 2
  • Sangmin Lee
    • 3
    Email author
  • Eoin Ó Colgáin
    • 4
  • Hossein Yavartanoo
    • 4
  1. 1.Department of Physics, College of ScienceYonsei UniversitySeoulKorea
  2. 2.Department of Physics and AstronomySeoul National UniversitySeoulKorea
  3. 3.Department of PhysicsUniversity of SeoulSeoulKorea
  4. 4.Korea Institute for Advanced StudySeoulKorea

Personalised recommendations