Gluon-initiated production of a Kaluza-Klein gluon in a bulk Randall-Sundrum model

  • Benjamin C. Allanach
  • Farvah Mahmoudi
  • Jordan P. Skittrall
  • K. Sridhar
Open Access
Article

Abstract

In the Bulk Randall-Sundrum model, the Kaluza-Klein excitations of the gauge bosons are the primary signatures. In particular, the search for the Kaluza-Klein (KK) excitation of the gluon at hadron colliders is of great importance in testing this model. At the leading order in QCD, the production of this KK-gluon proceeds only via \( q\bar q \)-initial states. We study the production of KK-gluons from gluon initial states at next-to-leading order in QCD. We find that, even after including the sub-dominant KK-gluon loops at this order, the next-to-leading order (NLO) cross-section is tiny compared to the leading order cross-section and unlikely to impact the searches for this resonance at hardon colliders.

Keywords

Field Theories in Higher Dimensions Beyond Standard Model NLO Computations 

References

  1. [1]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  2. [2]
    W.D. Goldberger and M.B. Wise, Modulus stabilization with bulk fields, Phys. Rev. Lett. 83 (1999) 4922 [hep-ph/9907447] [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    W.D. Goldberger and M.B. Wise, Phenomenology of a stabilized modulus, Phys. Lett. B 475 (2000) 275 [hep-ph/9911457] [SPIRES].ADSGoogle Scholar
  4. [4]
    H. Davoudiasl, J.L. Hewett and T.G. Rizzo, Experimental probes of localized gravity: on and off the wall, Phys. Rev. D 63 (2001) 075004 [hep-ph/0006041] [SPIRES].ADSGoogle Scholar
  5. [5]
    K. Sridhar, Constraining the Randall-Sundrum model using diphoton production at hadron colliders, JHEP 05 (2001) 066 [hep-ph/0103055] [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    B.C. Allanach, K. Odagiri, M.A. Parker and B.R. Webber, Searching for narrow graviton resonances with the ATLAS detector at the Large Hadron Collider, JHEP 09 (2000) 019 [hep-ph/0006114] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    B.C. Allanach et al., Exploring small extra dimensions at the large hadron collider, JHEP 12 (2002) 039 [hep-ph/0211205] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].MATHMathSciNetADSGoogle Scholar
  9. [9]
    N. Arkani-Hamed, M. Porrati and L. Randall, Holography and phenomenology, JHEP 08 (2001) 017 [hep-th/0012148] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  10. [10]
    R. Rattazzi and A. Zaffaroni, Comments on the holographic picture of the Randall-Sundrum model, JHEP 04 (2001) 021 [hep-th/0012248] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  11. [11]
    A. Pomarol, Gauge bosons in a five-dimensional theory with localized gravity, Phys. Lett. B 486 (2000) 153 [hep-ph/9911294] [SPIRES].ADSGoogle Scholar
  12. [12]
    T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  13. [13]
    A. Djouadi, G. Moreau and F. Richard, Resolving the A FB b puzzle in an extra dimensional model with an extended gauge structure, Nucl. Phys. B 773 (2007) 43 [hep-ph/0610173] [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    K. Agashe, A. Delgado, M.J. May and R. Sundrum, RS1, custodial isospin and precision tests, JHEP 08 (2003) 050 [hep-ph/0308036] [SPIRES].CrossRefADSGoogle Scholar
  15. [15]
    K. Agashe, A. Delgado and R. Sundrum, Gauge coupling renormalization in RS1, Nucl. Phys. B 643 (2002) 172 [hep-ph/0206099] [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    R. Contino and A. Pomarol, Holography for fermions, JHEP 11 (2004) 058 [hep-th/0406257] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  17. [17]
    K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    K. Agashe, G. Perez and A. Soni, B-factory signals for a warped extra dimension, Phys. Rev. Lett. 93 (2004) 201804 [hep-ph/0406101] [SPIRES].CrossRefADSGoogle Scholar
  19. [19]
    R. Contino, T. Kramer, M. Son and R. Sundrum, Warped/composite phenomenology simplified, JHEP 05 (2007) 074 [hep-ph/0612180] [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    B. Lillie, L. Randall and L.-T. Wang, The bulk RS KK-gluon at the LHC, JHEP 09 (2007) 074 [hep-ph/0701166] [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    K. Agashe, A. Belyaev, T. Krupovnickas, G. Perez and J. Virzi, LHC signals from warped extra dimensions, Phys. Rev. D 77 (2008) 015003 [hep-ph/0612015] [SPIRES].ADSGoogle Scholar
  22. [22]
    M. Guchait, F. Mahmoudi and K. Sridhar, Tevatron constraint on the Kaluza-Klein gluon of the bulk Randall-Sundrum model, JHEP 05 (2007) 103 [hep-ph/0703060] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    M. Guchait, F. Mahmoudi and K. Sridhar, Associated production of a Kaluza-Klein excitation of a gluon with a \( t\bar t \) pair at the LHC, Phys. Lett. B 666 (2008) 347 [arXiv:0710.2234] [SPIRES].ADSGoogle Scholar
  24. [24]
    A. Djouadi, G. Moreau and R.K. Singh, Kaluza-Klein excitations of gauge bosons at the LHC, Nucl. Phys. B 797 (2008) 1 [arXiv:0706.4191] [SPIRES].ADSGoogle Scholar
  25. [25]
    C.-N. Yang, Selection rules for the dematerialization of a particle into two photons, Phys. Rev. 77 (1950) 242 [SPIRES].MATHCrossRefADSGoogle Scholar
  26. [26]
    J.F. Nieves and P.B. Pal, Gravitational decay of the Z-boson, Phys. Rev. D 72 (2005) 093006 [hep-ph/0509321] [SPIRES].ADSGoogle Scholar
  27. [27]
    B.C. Allanach, J.P. Skittrall and K. Sridhar, Z boson decay to photon plus Kaluza-Klein graviton in large extra dimensions, JHEP 11 (2007) 089 [arXiv:0705.1953] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  28. [28]
    H. Davoudiasl, J.L. Hewett and T.G. Rizzo, Bulk gauge fields in the Randall-Sundrum model, Phys. Lett. B 473 (2000) 43 [hep-ph/9911262] [SPIRES].MathSciNetADSGoogle Scholar
  29. [29]
    P. Anastasopoulos, M. Bianchi, E. Dudas and E. Kiritsis, Anomalies, anomalous U(1)’s and generalized Chern-Simons terms, JHEP 11 (2006) 057 [hep-th/0605225] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  30. [30]
    S. Wolfram, The Mathematica book, 5th edition, Wolfram Media Press, U.S.A. (2003).Google Scholar
  31. [31]
    T. Hahn, CUBA: A library for multidimensional numerical integration, Comput. Phys. Commun. 168 (2005) 78 [hep-ph/0404043] [SPIRES].CrossRefADSGoogle Scholar
  32. [32]
    J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [SPIRES].
  33. [33]
    C.T. Hill, Anomalies, Chern-Simons terms and chiral delocalization in extra dimensions, Phys. Rev. D 73 (2006) 085001 [hep-th/0601154] [SPIRES].ADSGoogle Scholar
  34. [34]
    R.D. Field, Applications of perturbative QCD, Frontiers in physics, Addison-Wesley, U.K. (1989).Google Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Benjamin C. Allanach
    • 1
  • Farvah Mahmoudi
    • 2
  • Jordan P. Skittrall
    • 1
  • K. Sridhar
    • 3
    • 4
  1. 1.Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical SciencesUniveristy of CambridgeCambridgeU.K.
  2. 2.Laboratoire de Physique Corpusculaire de Clermont-Ferrand (LPC)Université Blaise Pascal, CNRS/IN2P3Aubière CedexFrance
  3. 3.LAPTH, Univ. de Savoie, CNRSAnnecy-le-VieuxFrance
  4. 4.Department of Theoretical PhysicsInstitute of Fundamental ResearchBombayIndia

Personalised recommendations