Probing the EVH limit of supersymmetric AdS black holes

Abstract

Extremal black holes in general dimensions are well known to contain an AdS2 factor in their near-horizon geometries. If the extremal limit is taken in conjunction with a specific vanishing horizon limit, the so-called Extremal Vanishing Horizon (EVH) limit, the AdS2 factor lifts to a locally AdS3 factor with a pinching angular direction. In this paper, we study the EVH limit of asymptotically AdS black holes which preserve some supersymmetry. The primary example we consider is the 1/16th BPS asymptotically AdS5 black hole, whose EVH limit has an AdS3 factor in its near-horizon geometry. We also consider the near-EVH limit of this black hole, in which the near-horizon geometry instead contains an extremal BTZ factor. We employ recent results on the large-N limit of the superconformal index of the dual CFT4 to understand the emergence of a CFT2 in the IR of the CFT4, which is the field theory dual to the emergence of the locally AdS3 factor in the near-horizon geometry. In particular, we show that the inverse Laplace transform of the superconformal index, yielding the black hole entropy, becomes equivalent to the derivation of a Cardy formula for the dual CFT2. Finally, we examine the EVH limit of supersymmetric black holes in other dimensions.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  2. [2]

    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  3. [3]

    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  4. [4]

    J.R. David, G. Mandal and S.R. Wadia, Microscopic formulation of black holes in string theory, Phys. Rept. 369 (2002) 549 [hep-th/0203048] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  5. [5]

    O. Aharony, O Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv: 0806.1218] [INSPIRE].

  6. [6]

    H. Mori and S. Yamaguchi, M5-branes and Wilson surfaces in AdS7/CFT6 correspondence, Phys. Rev. D 90 (2014) 026005 [arXiv:1404.0930] [INSPIRE].

    ADS  Google Scholar 

  7. [7]

    S.M. Chester and E. Perlmutter, M-theory reconstruction from (2, 0) CFT and the chiral algebra conjecture, JHEP 08 (2018) 116 [arXiv:1805.00892] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  8. [8]

    J.J. Heckman and T. Rudelius, Top down approach to 6D SCFTs, J. Phys. A 52 (2019) 093001 [arXiv:1805.06467] [INSPIRE].

    ADS  Google Scholar 

  9. [9]

    M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  10. [10]

    M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole, Phys. Rev. D 48 (1993) 1506 [Erratum ibid. D 88 (2013) 069902] [gr-qc/9302012] [INSPIRE].

  11. [11]

    A. Strominger, Black hole entropy from near horizon microstate s, JHEP 02 (1998) 009 [hep-th/9712251] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  12. [12]

    S.D. Mathur, The fuzzball proposal for black holes: an elementary review, Fortsch. Phys. 53 (2005) 793 [hep-th/0502050] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  13. [13]

    T. Hartman, C.A. Keller and B. Stoica, Universal spectrum of 2d conformal field theory in the large c limit, JHEP 09 (2014) 118 [arXiv:1405.5137] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  14. [14]

    H.K. Kunduri, J. Lucietti and H.S. Reall, Near-horizon symmetries of extremal black holes, Class. Quant. Grav. 24 (2007) 4169 [arXiv :0705. 4214] [INSPIRE].

  15. [15]

    F. Benini, K. Hristov and A. Zaffaroni, Black hole microstates in AdS4 from supersymmetric localization, JHEP 05 (2016) 054 [arXiv:1511. 04085] [INSPIRE].

  16. [16]

    S.M. Hosseini, K. Hristov and A. Zaffaroni, An extremization principle for the entropy of rotating BPS black holes in AdS5 , JHEP 07 (2017) 106 [arXiv:1705.05383] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  17. [17]

    F. Benini and P. Milan, Black holes in 4d N = 4 super-Yang-Mills, arXiv:1812.09613 [INSPIRE].

  18. [18]

    A. Cabo-Bizet, D. Cassani, D. Martelli and S. Murthy, Microscopic origin of the Bekenstein-Hawking entropy of supersymmetric AdS5 black holes, JHEP 10 (2019) 062 [arXiv: 1810.11442] [INSPIRE].

  19. [19]

    S. Choi, J. Kim, S. Kim and J. Nahmgoong, Large AdS black holes from QFT, arXiv:1810.12067 [INSPIRE].

  20. [20]

    J. Kim, S. Kim and J. Song, A 4d N = 1 Cardy formula, arXiv:1904 . 03455 [INSPIRE].

  21. [21]

    A. Arabi Ardehali, Cardy-like asymptotics of the 4d N = 4 index and AdS5 blackholes, JHEP 06 (2019) 134 [arXiv:1902.06619] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  22. [22]

    A. Cabo-Bizet, D. Cassani, D. Martelli and S. Murthy, The asymptotic growth of states of the 4d N = 1 superconformal index, JHEP 08 (2019) 120 [arXiv:1904.05865] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  23. [23]

    M. Honda, Quantum black hole entropy from 4d supersymmetric Cardy formula, Phys. Rev. D 100 (2019) 026008 [arXiv:1901.08091] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  24. [24]

    A.G. Lezcano and L.A. Pando Zayas, Microstate counting via Bethe Ansätze in the 4d N = 1 superconformal index, arXiv: 1907.12841 [INSPIRE].

  25. [25]

    F. Larsen, J. Nian and Y. Zeng, AdS5 black hole entropy near the BPS limit, arXiv: 1907.02505 [INSPIRE].

  26. [26]

    J. Nian and L.A. Pando Zayas, Microscopic entropy of rotating electrically charged AdS4 black holes from field theory localization, arXiv:1909.07943 [INSPIRE].

  27. [27]

    F. Azzurli, N. Bobev, P.M. Crichigno, V.S. Min and A. Zaffaroni, A universal counting of black hol e microstates in AdS4 , JHEP 02 (2018) 054 [arXiv:1707.04257] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  28. [28]

    N. Bobev and P.M. Crichigno, Universal spinning black holes and theories of class R, JHEP 12 (2019) 054 [arXiv:1909.05873] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  29. [29]

    S. Choi, C. Hwang and S. Kim, Quantum vortices, M2-branes and black holes, arXiv : 1908.02470 [INSPIRE].

  30. [30]

    A. Amariti, I. Garozzo and G. Lo Monaco, Entropy function from toric geometry, arXiv : 1904.10009 [INSPIRE].

  31. [31]

    A. Lanir, A. Nedelin and O. Sela, Black hole entropy function for toric theories via Bethe Ansatz, arXiv:1908.01737 [INSPIRE].

  32. [32]

    J.B. Gutowski and H.S. Reall, Supersymmetric AdS5 black holes, JHEP 02 (2004) 006 [hep-th/0401042] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    J.B. Gutowski and H.S. Reall, General supersymmetric AdS5 black holes, JHEP 04 (2004) 048 [hep-th/0401129] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    Z.W. Chong, M. Cvetič, H. Lü and C.N. Pope, Five-dimensional gauged supergravity black holes with independent rotation parameters, Phys. Rev. D 72 (2005) 041901 [hep-th/0505112] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  35. [35]

    Z.W. Chong, M. Cvetič, H. Lu and C.N. Pope, General non-extremal rotating black holes in minimal five-dimensional gauged supergravity, Phys. Rev. Lett. 95 (2005) 161301 [hep-th/0506029] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  36. [36]

    H.K. Kunduri, J. Lucietti and H.S. Reall, Supersymmetric multi-charge AdS5 black holes, JHEP 04 (2006) 036 [hep-th/0601156] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  37. [37]

    V. Balasubramanian, J. de Boer, V. Jejjala and J. Simon, Entropy of near-extremal black holes in AdS5 , JHEP 05 (2008) 067 [arXiv:0707.3601] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  38. [38]

    R. Fareghbal, C.N. Gowdigere, A.E. Mosaffa and M.M. Sheikh-Jabbari, Nearing extremal intersecting giants and new decoupled sectors in N= 4 SYM, JHEP 08 (2008) 070 [arXiv:0801.4457] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  39. [39]

    R. Fareghbal, C.N. Gowdigere, A.E. Mosaffa and M.M. Sheikh-Jabbari, Nearing 11d extremal intersecting giants and new decoupled sectors in D = 3, 6 SCFT's, Phys. Rev. D 81 (2010) 046005 [arXiv:0805.0203] [INSPIRE].

    ADS  Google Scholar 

  40. [40]

    M.M. Sheikh-Jabbari and H. Yavartanoo, EVH black holes, AdS3 throats and EVH/CFT proposal, JHEP 10 (2011) 013 [arXiv:1107.5705] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  41. [41]

    J. de Boer, M. Johnstone, M.M. Sheikh-Jabbari and J. Simon, Emergent IR dual 2d CFTs in charged AdS5 black holes, Phys. Rev. D 85 (2012) 084039 [arXiv:1112.4664] [INSPIRE].

    ADS  Google Scholar 

  42. [42]

    M. Johnstone, M.M. Sheikh-Jabbari, J. Simon and H. Yavartanoo, Near-extremal vanishing horizon AdS5 black holes and their CFT duals, JHEP 04 (2013) 045 [arXiv:1301.3387] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  43. [43]

    S. Sadeghian, M.M. Sheikh-Jabbari, M.H. Vahidinia and H. Yavartanoo, Near horizon structure of extremal vanishing horizon black holes, Nucl. Phys. B 900 (2015) 222 [arXiv:1504.03607] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  44. [44]

    J. de Boer, M.M. Sheikh-Jabbari and J. Simon, Near horizon limits of massless BTZ and their CFT duals, Class. Quant. Grav. 28 (2011) 175012 [arXiv:1011.1897] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  45. [45]

    M. Berkooz, P. Narayan and A. Zait, Chiral 2D "strange metals" from N = 4 SYM, JHEP 01 (2015) 003 [arXiv:1408.3862] [INSPIRE].

    ADS  Article  Google Scholar 

  46. [46]

    M. Berkooz, A. Frishman and A. Zait, Degenerate rotating black holes, chiral CFTs and Fermi surfaces I - analytic results for quasinormal modes, JHEP 08 (2012) 109 [arXiv:1206.3735] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  47. [47]

    C. Beem, M. Lemos, P. Liendo, W. Peelaers, L. Rastelli and B.C. van Rees, Infinite chiral symmetry in four dimensions, Commun. Math. Phys. 336 (2015) 1359 [arXiv:1312.5344] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  48. [48]

    G. Bașar, A. Cherman, K.R. Dienes and D.A. McGady, 4D-2D equivalence for large-N Yang-Mills theory, Phys. Rev. D 92 (2015) 105029 [arXiv:1507.08666] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  49. [49]

    M. Cvetič, G.W. Gibbons, H. Lu and C.N. Pope, Rotating black holes in gauged supergravities: thermodynamics, supersymmetric limits, topological solitons and time machines, hep-th/0504080 [INSPIRE].

  50. [50]

    M. Cvetič et al., Embedding AdS black holes in ten-dimensions and eleven-dimensions, Nucl. Phys. B 558 (1999) 96 [hep-th/9903214] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  51. [51]

    E. Ó Colgáin, M.M. Sheikh-Jabbari, J.F. Vázquez-Poritz, H. Yavartanoo and Z. Zhang, Warped Ricci-fiat reductions, Phys. Rev. D 90 (2014) 045013 [arXiv:1406.6354] [INSPIRE].

  52. [52]

    P.J. Silva, Thermodynamics at the BPS bound for black holes in AdS, JHEP 10 (2006) 022 [hep-th/0607056] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  53. [53]

    F.A. Dolan and H. Osborn, Applications of the superconformal index for protected operators and q-hypergeometric identities to N= 1 dual theories, Nucl. Phys. B 818 (2009) 137 [arXiv:0801.4947] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  54. [54]

    J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An index for 4 dimensional super conformal theories, Commun. Math. Phys. 275 (2007) 209 [hep-th/0510251] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  55. [55]

    B. Assel, D. Cassani and D. Martelli, Localization on Hopf surfaces, JHEP 08 (2014) 123 [arXiv:1405.5144] [INSPIRE].

    ADS  Article  Google Scholar 

  56. [56]

    B. Assel, D. Cassani, L. DiPietro, Z. Komargodski, J. Lorenzen and D. Martelli, The Casimir energy in curved space and its supersymmetric counterpart, JHEP 07 (2015) 043 [arXiv:1503.05537] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  57. [57]

    J.L. Cardy, Operator content of two-dimensional conformally invariant theories, Nucl. Phys. B 270 (1986) 186 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  58. [58]

    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  59. [59]

    V. Jejjala and S. Nampuri, Cardy and Kerr, JHEP 02 (2010) 088 [arXiv:0909.1110] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  60. [60]

    A. Belin, J. de Boer, J. Kruthoff, B. Michel, E. Shaghoulian and M. Shyani, Universality of sparse d > 2 conformal field theory at large N, JHEP 03 (2017) 067 [arXiv:1610.06186] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  61. [61]

    P. De Lange, A. Maloney and E. Verlinde, Monstrous product CFTs in the grand canonical ensemble, arXiv:1807.06200 [INSPIRE].

  62. [62]

    S. Cecotti, J. Song, C. Vafa and W. Yan, Superconformal index, BPS monodromy and chiral algebras, JHEP 11 (2017) 013 [arXiv:1511.01516] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  63. [63]

    S.S. Gubser, I.R. Klebanov and A.W. Peet, Entropy and temperature of black 3-branes, Phys. Rev. D 54 (1996) 3915 [hep-th/9602135] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  64. [64]

    S.S. Gubser, I.R. Klebanov and A.A. Tseytlin, Coupling constant dependence in the thermodynamics of N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 534 (1998) 202 [hep-th /9805156] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  65. [65]

    R. Dijkgraaf, E.P. Verlinde and H.L. Verlinde, Matrix string theory, Nucl. Phys. B 500 (1997) 43 [hep-th/9703030] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  66. [66]

    F.A. Dolan and H. Osborn, On short and semi-short representations for four-dimensional superconformal symmetry , Annals Phys. 307 (2003) 41 [hep-th/0209056] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  67. [67]

    T. Harmark, K.R. Kristjansson and M. Orselli, Decoupling limits of N = 4 super Yang-Mills on R x S3, JHEP 09 (2007) 115 [arXiv:0707.1621] [INSPIRE].

    ADS  Article  Google Scholar 

  68. [68]

    N. Beisert, The dilatation operator of N = 4 super Yang-Mills theory and integrability, Phys. Rept. 405 (2004) 1 [hep-th/0407277] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  69. [69]

    D.D.K. Chow, Charged rotating black holes in six-dimensional gauged supergravity, Class. Quant. Grav. 27 (2010) 065004 [arXiv:0808.2728] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  70. [70]

    S. Choi, C. Hwang, S. Kim and J. Nahmgoong, Entropy functions of BPS black holes in AdS4 and AdS6, J. Korean Phys. Soc. 76 (2020) 101 [arXiv:1811.02158] [INSPIRE].

    ADS  Article  Google Scholar 

  71. [71]

    S. Choi and S. Kim, Large AdS6 black holes from CFT5 , arXiv:1904.01164 [INSPIRE].

  72. [72]

    D.D.K. Chow, Equal charge black holes and seven dimensional gauged supergravity, Class. Quant. Grav. 25 (2008) 175010 [arXiv:0711.1975] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  73. [73]

    K. Hristov, S. Katmadas and C. Toldo, Matter-coupled supersymmetric Kerr-Newman-AdS4 black holes, Phys. Rev. D 100 (2019) 066016 [arXiv:1907.05192] [INSPIRE].

    ADS  Google Scholar 

  74. [74]

    J.M. Maldacena and L. Susskind, D-branes and fat black holes, Nucl. Phys. B 475 (1996) 679 [hep-th/9604042] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  75. [75]

    R. Dijkgraaf, G.W. Moore, E.P. Verlinde and H.L. Verlinde, Elliptic genera of symmetric products and second quantized strings, Commun. Math. Phys. 185 (1997) 197 [hep-th/9608096] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  76. [76]

    A. Bhattacharyya, S.S. Haque, V. Jejjala, S. Nampuri and Á. Véliz-Osorio, Attractive holographic c-functions, JHEP 11 (2014) 138 [arXiv:1407.0469] [INSPIRE].

    ADS  Article  Google Scholar 

  77. [77]

    S. Ferrara, R. Kallosh and A. Strominger, N = 2 extremal black holes, Phys. Rev. D 52 (1995) R5412 [hep-th/9508072] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  78. [78]

    A. Strominger, Macroscopic entropy of N = 2 extremal black holes, Phys. Lett. B 383 (1996) 39 [hep-th/9602111] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  79. [79]

    S. Ferrara and R. Kallosh, Supersymmetry and attractors, Phys. Rev. D 54 (1996) 1514 [hep-th/9602136] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  80. [80]

    S. Ferrara and R. Kallosh, Universality of super symmetric attractors, Phys. Rev. D 54 (1996) 1525 [hep-th/9603090] [INSPIRE].

    ADS  MATH  Google Scholar 

  81. [81]

    A. Sen, Black hole entropy function and the attractor mechanism in higher derivative gravity, JHEP 09 (2005) 038 [hep-th/0506177] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  82. [82]

    D. Astefanesei, K. Goldstein, R.P. Jena, A. Sen and S.P. Trivedi, Rotating attractors, JHEP 10 (2006) 058 [hep-th/0606244] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  83. [83]

    A. Dabholkar, A. Sen and S.P. Trivedi, Black hole microstates and attractor without supersymmetry, JHEP 01 (2007) 096 [hep-th/0611143] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  84. [84]

    A. Sen, Black hole entropy function, attractors and precision counting of microstates, Gen. Rel. Grav. 40 (2008) 2249 [arXiv:0708.1270] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wei Li.

Additional information

ArXiv ePrint: 1910.14293

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goldstein, K., Jejjala, V., Lei, Y. et al. Probing the EVH limit of supersymmetric AdS black holes. J. High Energ. Phys. 2020, 154 (2020). https://doi.org/10.1007/JHEP02(2020)154

Download citation

Keywords

  • AdS-CFT Correspondence
  • Black Holes in String Theory
  • Supersymmetric Gauge Theory