Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Heterotic instantons for monad and extension bundles

  • 15 Accesses

Abstract

We consider non-perturbative superpotentials from world-sheet instantons wrapped on holomorphic genus zero curves in heterotic string theory. These superpotential contributions feature prominently in moduli stabilization and large field axion inflation, which makes their presence or absence, as well as their functional dependence on moduli, an important issue. We develop geometric methods to compute the instanton superpotentials for heterotic string theory with monad and extension bundles. Using our methods, we find a variety of examples with a non-vanishing superpotential. In view of standard vanishing theorems, we speculate that these results are likely to be attributed to the non-compactness of the instanton moduli space. We test this proposal, for the case of monad bundles, by considering gauged linear sigma models where compactness of the instanton moduli space can be explicitly checked. In all such cases, we find that the geometric results are consistent with the vanishing theorems. Surprisingly, linearly dependent Pfaffians even arise for cases with a non-compact instanton moduli space. This suggests some gauged linear sigma models with a non-compact instanton moduli space may still have a vanishing instanton superpotential.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, de Sitter Space and the Swampland, arXiv:1806.08362 [INSPIRE].

  2. [2]

    N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The String landscape, black holes and gravity as the weakest force, JHEP06 (2007) 060 [hep-th/0601001] [INSPIRE].

  3. [3]

    A.P. Braun, M. Del Zotto, J. Halverson, M. Larfors, D.R. Morrison and S. Schäfer-Nameki, Infinitely many M2-instanton corrections to M-theory on G2-manifolds, JHEP09 (2018) 077 [arXiv:1803.02343] [INSPIRE].

  4. [4]

    J. Halverson, M. Plesser, F. Ruehle and J. Tian, Kähler Moduli Stabilization and the Propagation of Decidability, arXiv:1911.07835 [INSPIRE].

  5. [5]

    E. Witten, World sheet corrections via D instantons, JHEP02 (2000) 030 [hep-th/9907041] [INSPIRE].

  6. [6]

    E.I. Buchbinder, R. Donagi and B.A. Ovrut, Vector bundle moduli superpotentials in heterotic superstrings and M-theory, JHEP07 (2002) 066 [hep-th/0206203] [INSPIRE].

  7. [7]

    E.I. Buchbinder, R. Donagi and B.A. Ovrut, Superpotentials for vector bundle moduli, Nucl. Phys.B 653 (2003) 400 [hep-th/0205190] [INSPIRE].

  8. [8]

    C. Beasley and E. Witten, Residues and world sheet instantons, JHEP10 (2003) 065 [hep-th/0304115] [INSPIRE].

  9. [9]

    J. Distler, Notes on N = 2 σ-models, hep-th/9212062 [INSPIRE].

  10. [10]

    J. Distler and S. Kachru, (0, 2) Landau-Ginzburg theory, Nucl. Phys.B 413 (1994) 213 [hep-th/9309110] [INSPIRE].

  11. [11]

    E. Silverstein and E. Witten, Criteria for conformal invariance of (0, 2) models, Nucl. Phys.B 444 (1995) 161 [hep-th/9503212] [INSPIRE].

  12. [12]

    A. Basu and S. Sethi, World sheet stability of (0, 2) linear σ-models, Phys. Rev.D 68 (2003) 025003 [hep-th/0303066] [INSPIRE].

  13. [13]

    M. Bertolini and M.R. Plesser, Worldsheet instantons and (0, 2) linear models, JHEP08 (2015) 081 [arXiv:1410.4541] [INSPIRE].

  14. [14]

    E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys.B 403 (1993) 159 [hep-th/9301042] [INSPIRE].

  15. [15]

    M. Blaszczyk, S. Groot Nibbelink and F. Ruehle, Green-Schwarz Mechanism in Heterotic (2,0) Gauged Linear σ-models: Torsion and NS5 Branes, JHEP08 (2011) 083 [arXiv:1107.0320] [INSPIRE].

  16. [16]

    C. Quigley and S. Sethi, Linear σ-models with Torsion, JHEP11 (2011) 034 [arXiv:1107.0714] [INSPIRE].

  17. [17]

    V. Braun, M. Kreuzer, B.A. Ovrut and E. Scheidegger, Worldsheet Instantons and Torsion Curves, AMS/IP Stud. Adv. Math.44 (2008) 231 [arXiv:0801.4154] [INSPIRE].

  18. [18]

    V. Braun, M. Kreuzer, B.A. Ovrut and E. Scheidegger, Worldsheet Instantons and Torsion Curves, Part B: Mirror Symmetry, JHEP10 (2007) 023 [arXiv:0704.0449] [INSPIRE].

  19. [19]

    V. Braun, M. Kreuzer, B.A. Ovrut and E. Scheidegger, Worldsheet instantons and torsion curves, part A: Direct computation, JHEP10 (2007) 022 [hep-th/0703182] [INSPIRE].

  20. [20]

    V. Braun, M. Kreuzer, B.A. Ovrut and E. Scheidegger, Worldsheet instantons, torsion curves and non-perturbative superpotentials, Phys. Lett.B 649 (2007) 334 [hep-th/0703134] [INSPIRE].

  21. [21]

    E.I. Buchbinder and B.A. Ovrut, Non-vanishing Superpotentials in Heterotic String Theory and Discrete Torsion, JHEP01 (2017) 038 [arXiv:1611.01922] [INSPIRE].

  22. [22]

    E. Buchbinder, A. Lukas, B. Ovrut and F. Ruehle, Heterotic Instanton Superpotentials from Complete Intersection Calabi-Yau Manifolds, JHEP10 (2017) 032 [arXiv:1707.07214] [INSPIRE].

  23. [23]

    E.I. Buchbinder, L. Lin and B.A. Ovrut, Non-vanishing Heterotic Superpotentials on Elliptic Fibrations, JHEP09 (2018) 111 [arXiv:1806.04669] [INSPIRE].

  24. [24]

    E.I. Buchbinder, A. Constantin and A. Lukas, The Moduli Space of Heterotic Line Bundle Models: a Case Study for the Tetra-Quadric, JHEP03 (2014) 025 [arXiv:1311.1941] [INSPIRE].

  25. [25]

    E.I. Buchbinder, A. Constantin and A. Lukas, A heterotic standard model with BL symmetry and a stable proton, JHEP06 (2014) 100 [arXiv:1404.2767] [INSPIRE].

  26. [26]

    E. Buchbinder, A. Lukas, B. Ovrut and F. Ruehle, Instantons and Hilbert Functions, to appear (2019).

  27. [27]

    L.B. Anderson, J. Gray, S.-J. Lee, Y.-H. He and A. Lukas, A 2009 ‘CICY package’, based on methods described in arXiv:0911.1569, arXiv:0911.0865, arXiv:0805.2875, hep-th/0703249, hep-th/0702210.

  28. [28]

    L.B. Anderson, Y.-H. He and A. Lukas, Monad Bundles in Heterotic String Compactifications, JHEP07 (2008) 104 [arXiv:0805.2875] [INSPIRE].

  29. [29]

    P. Candelas, A.M. Dale, C.A. Lütken and R. Schimmrigk, Complete Intersection Calabi-Yau Manifolds, Nucl. Phys.B 298 (1988) 493 [INSPIRE].

  30. [30]

    S. Hosono, A. Klemm, S. Theisen and S.-T. Yau, Mirror symmetry, mirror map and applications to Calabi-Yau hypersurfaces, Commun. Math. Phys.167 (1995) 301 [hep-th/9308122] [INSPIRE].

  31. [31]

    P. Green and T. Hubsch, Calabi-Yau Hypersurfaces in Products of Semiample Surfaces, Commun. Math. Phys.115 (1988) 231 [INSPIRE].

  32. [32]

    L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, The Edge Of Supersymmetry: Stability Walls in Heterotic Theory, Phys. Lett.B 677 (2009) 190 [arXiv:0903.5088] [INSPIRE].

  33. [33]

    L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, Stability Walls in Heterotic Theories, JHEP09 (2009) 026 [arXiv:0905.1748] [INSPIRE].

  34. [34]

    M. Blaszczyk, S. Groot Nibbelink and F. Ruehle, Gauged Linear σ-models for toroidal orbifold resolutions, JHEP05 (2012) 053 [arXiv:1111.5852] [INSPIRE].

  35. [35]

    J. Distler, Notes on (0, 2) superconformal field theories, in Trieste HEP Cosmology 1994:0322-351, pp. 0322–351 (1995) [hep-th/9502012] [INSPIRE].

  36. [36]

    A. Adams, M. Ernebjerg and J.M. Lapan, Linear models for flux vacua, Adv. Theor. Math. Phys.12 (2008) 817 [hep-th/0611084] [INSPIRE].

  37. [37]

    A. Adams and D. Guarrera, Heterotic Flux Vacua from Hybrid Linear Models, arXiv:0902.4440 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Correspondence to Evgeny I. Buchbinder.

Additional information

ArXiv ePrint: 1912.07222

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Buchbinder, E.I., Lukas, A., Ovrut, B.A. et al. Heterotic instantons for monad and extension bundles. J. High Energ. Phys. 2020, 81 (2020). https://doi.org/10.1007/JHEP02(2020)081

Download citation

Keywords

  • Superstring Vacua
  • Superstrings and Heterotic Strings