Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Dark matter, dark radiation and gravitational waves from mirror Higgs parity

  • 5 Accesses


An exact parity replicates the Standard Model giving a Mirror Standard Model, SM SM. This “Higgs Parity” and the mirror electroweak symmetry are spontaneously broken by the mirror Higgs, 〈H〉 = v ≫ 〈H〉, yielding the Standard Model Higgs as a Pseudo-Nambu-Goldstone Boson of an approximate SU (4) symmetry, with a quartic coupling λSM(v) 103. Mirror electromagnetism is unbroken and dark matter is composed of e and \( {\overline{e}}^{\prime } \). Direct detection may be possible via the kinetic mixing portal, and in unified theories this rate is correlated with the proton decay rate. With a high reheat temperature after inflation, the et dark matter abundance is determined by freeze-out followed by dilution from decays of mirror neutrinos, ν→ ℓH . Remarkably, this requires v (108–1010) GeV, predicting a Higgs mass of 123 ± 3 GeV at 1σ and a Standard Model neutrino mass of (102–101) eV, consistent with observed neutrino masses. The mirror QCD sector exhibits a first order phase transition producing gravitational waves that may be detected by future observations. Mirror glueballs decay to mirror photons giving dark radiation with ∆Neff 0.03–0.4. With a low reheat temperature after inflation, the e dark matter abundance is determined by freeze-in from the SM sector by either the Higgs or kinetic mixing portal.

A preprint version of the article is available at ArXiv.


  1. [1]

    M. Redi and A. Strumia, Axion-Higgs unification, JHEP11 (2012) 103 [arXiv:1208. 6013] [INSPIRE].

  2. [2]

    L.J. Hall and Y. Nomura, Grand unification and intermediate scale supersymmetry, JHEP 02 (2014) 129 [arXiv: 1312 .6695] [INSPIRE].

  3. [3]

    M. Ibe, S. Matsumoto and T.T. Yanagida, Flat Higgs potential from Planck scale supersymmetry breaking , Phys. Lett.B 732 (2014) 214 [arXiv:1312. 7108] [INSPIRE].

  4. [4]

    L.J. Hall, Y. Nomura and S. Shirai, Grand Unification, axion and inflation in intermediate scale supersymmetry, JHEP06 (2014) 137 [arXiv :1403.8138] [INSPIRE].

  5. [5]

    P.J. Fox, G.D. Kribs and A. Martin, Split Dirac supersymmetry: an ultraviolet completion of Higgsino dark matter, Phys. Rev.D 90 (2014) 075006 [arXiv: 1405. 3692] [INSPIRE].

  6. [6]

    L.J. Hall and K. Harigaya, Implications of Higgs discovery for the strong CP problem and unification, JHEP10 (2018) 130 [arXiv :1803 .08119] [INSPIRE].

  7. [7]

    M.A.B. Beg and H.S. Tsao, Strong P , T noninvariances in a superweak theory, Phys. Rev. Lett.41 (1978) 278 [INSPIRE].

  8. [8]

    R.N. Mohapatra and G. Senjanovic, Natural suppression of strong p and t noninvariance, Phys. Lett.B 79 (1978) 283.

  9. [9]

    K.S. Babu and R.N. Mohapatra, CP violation in seesaw models of quark masses, Phys. Rev. Lett.62 (1989) 1079 [INSPIRE].

  10. [10]

    K.S. Babu and R.N. Mohapatra, A solution to the strong CP problem without an axion, Phys. Rev.D 41 (1990) 1286 [INSPIRE].

  11. [11]

    L.J. Hall and K. Harigaya, Higgs parity grand unification, JHEP11 (2019) 033 [arXiv:1905.12722] [INSPIRE].

  12. [12]

    D. Dunsky, L.J. Hall and K. Harigaya, Higgs parity, strong CP and dark matter, JHEP07 (2019) 016 [arXiv:1902.07726] [INSPIRE].

  13. [13]

    S.M. Barr, D. Chang and G. Senjanović, Strong CP problem and parity, Phys. Rev. Lett.67 (1991) 2765 [INSPIRE].

  14. [14]

    T.D. Lee and C.-N. Yang, Question of parity conservation in weak interactions, Phys. Rev.104 (1956) 254 [INSPIRE].

  15. [15]

    I.Yu. Kobzarev, L.B. Okun and I.Ya. Pomeranchuk, On the possibility of experimental observation of mirror particles, Sov. J. Nucl. Phys.3 (1966) 837 [INSPIRE].

  16. [16]

    M. Pavsic, External inversion, internal inversion and reflection invariance, Int. J. Theor. Phys.9 (1974) 229 [hep-ph/0105344] [INSPIRE].

  17. [17]

    R. Foot, H. Lew and R.R. Volkas, A model with fundamental improper space-time symmetries, Phys. Lett.B 272 (1991) 67 [INSPIRE].

  18. [18]

    Z. Chacko, H.-S. Goh and R. Harnik, The twin Higgs: natural electroweak breaking from mirror symmetry, Phys. Rev. Lett.96 (2006) 231802 [hep-ph/0506256] [INSPIRE].

  19. [19]

    R. Barbieri, T. Gregoire and L.J. Hall, Mirror world at the large hadron collider, hep-ph/0509242 [INSPIRE].

  20. [20]

    V. Agrawal, S.M. Barr, J.F. Donoghue and D. Seckel, Viable range of the mass scale of the standard model, Phys. Rev.D 57 (1998) 5480 [hep-ph/9707380] [INSPIRE].

  21. [21]

    L.J. Hall, D. Pinner and J.T. Ruderman, The weak scale from BBN, JHEP12 (2014) 134 [arXiv:1409.0551] [INSPIRE].

  22. [22]

    S. Borsányi et al., Precision SU(3) lattice thermodynamics for a large temperature range, JHEP07 (2012) 056 [arXiv:1204.6184] [INSPIRE].

  23. [23]

    Y. Chen et al., Glueball spectrum and matrix elements on anisotropic lattices, Phys. Rev.D 73 (2006) 014516 [hep-lat/0510074] [INSPIRE].

  24. [24]

    D. Buttazzo et al., Investigating the near-criticality of the Higgs boson, JHEP12 (2013) 089 [arXiv:1307.3536] [INSPIRE].

  25. [25]

    D. Dunsky, L.J. Hall and K. Harigaya, CHAMP cosmic rays, JCAP07 (2019) 015 [arXiv:1812.11116] [INSPIRE].

  26. [26]

    R.H. Helm, Inelastic and elastic scattering of 187-Mev electrons from selected even-even nuclei, Phys. Rev.104 (1956) 1466 [INSPIRE].

  27. [27]

    J.D. Lewin and P.F. Smith, Review of mathematics, numerical factors and corrections for dark matter experiments based on elastic nuclear recoil, Astropart. Phys.6 (1996) 87 [INSPIRE].

  28. [28]

    XENON collaboration, Dark matter search results from a one ton-year exposure of XENON1T, Phys. Rev. Lett.121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].

  29. [29]

    Y. Aoki, E. Shintani and A. Soni, Proton decay matrix elements on the lattice, Phys. Rev.D 89 (2014) 014505 [arXiv:1304.7424] [INSPIRE].

  30. [30]

    J.E. Juknevich, D. Melnikov and M.J. Strassler, A pure-glue hidden valley I. States and decays, JHEP07 (2009) 055 [arXiv:0903.0883] [INSPIRE].

  31. [31]

    H.B. Meyer, Glueball matrix elements: a lattice calculation and applications, JHEP01 (2009) 071 [arXiv:0808.3151] [INSPIRE].

  32. [32]

    M. Kawasaki, K. Kohri and T. Moroi, Big-Bang nucleosynthesis and hadronic decay of long-lived massive particles, Phys. Rev.D 71 (2005) 083502 [astro-ph/0408426] [INSPIRE].

  33. [33]

    K. Harigaya and K. Mukaida, Thermalization after/during Reheating, JHEP05 (2014) 006 [arXiv:1312.3097] [INSPIRE].

  34. [34]

    K. Mukaida and M. Yamada, Thermalization process after inflation and effective potential of scalar field, JCAP02 (2016) 003 [arXiv:1506.07661] [INSPIRE].

  35. [35]

    K. Harigaya et al., Thermal relic dark matter beyond the unitarity limit, JHEP08 (2016) 151 [arXiv:1606.00159] [INSPIRE].

  36. [36]

    J. Kang, M.A. Luty and S. Nasri, The relic abundance of long-lived heavy colored particles, JHEP09 (2008) 086 [hep-ph/0611322] [INSPIRE].

  37. [37]

    V. De Luca et al., Colored dark matter, Phys. Rev.D 97 (2018) 115024 [arXiv:1801.01135] [INSPIRE].

  38. [38]

    K. Harigaya and M. Kawasaki, QCD axion dark matter from long-lived domain walls during matter domination, Phys. Lett.B 782 (2018) 1 [arXiv:1802.00579] [INSPIRE].

  39. [39]

    M. Kawasaki, K. Kohri and N. Sugiyama, Cosmological constraints on late time entropy production, Phys. Rev. Lett.82 (1999) 4168 [astro-ph/9811437] [INSPIRE].

  40. [40]

    M. Kawasaki, K. Kohri and N. Sugiyama, MeV scale reheating temperature and thermalization of neutrino background, Phys. Rev.D 62 (2000) 023506 [astro-ph/0002127] [INSPIRE].

  41. [41]

    P.F. de Salas et al., Bounds on very low reheating scenarios after Planck, Phys. Rev.D 92 (2015) 123534 [arXiv:1511.00672] [INSPIRE].

  42. [42]

    Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].

  43. [43]

    CMB-S4 collaboration, CMB-S4 science book, first edition, arXiv:1610.02743 [INSPIRE].

  44. [44]

    A. Font-Ribera et al., DESI and other dark energy experiments in the era of neutrino mass measurements, JCAP05 (2014) 023 [arXiv:1308.4164] [INSPIRE].

  45. [45]

    R. Allison et al., Towards a cosmological neutrino mass detection, Phys. Rev.D 92 (2015) 123535 [arXiv:1509.07471] [INSPIRE].

  46. [46]

    M. Archidiacono, T. Brinckmann, J. Lesgourgues and V. Poulin, Physical effects involved in the measurements of neutrino masses with future cosmological data, JCAP02 (2017) 052 [arXiv:1610.09852] [INSPIRE].

  47. [47]

    K.-Y. Choi, J.-O. Gong and C.S. Shin, Isocurvature perturbation of weakly interacting massive particles and small scale structure, Phys. Rev. Lett.115 (2015) 211302 [arXiv:1507.03871] [INSPIRE].

  48. [48]

    K. Harigaya, M. Kawasaki, K. Mukaida and M. Yamada, Dark matter production in late time reheating, Phys. Rev.D 89 (2014) 083532 [arXiv:1402.2846] [INSPIRE].

  49. [49]

    K. Harigaya, K. Mukaida and M. Yamada, Dark matter production during the thermalization era, JHEP07 (2019) 059 [arXiv:1901.11027] [INSPIRE].

  50. [50]

    L.G. Yaffe and B. Svetitsky, First order phase transition in the SU(3) gauge theory at finite temperature, Phys. Rev.D 26 (1982) 963 [INSPIRE].

  51. [51]

    B. Svetitsky and L.G. Yaffe, Critical behavior at finite temperature confinement transitions, Nucl. Phys.B 210 (1982) 423 [INSPIRE].

  52. [52]

    E. Witten, Cosmic separation of phases, Phys. Rev.D 30 (1984) 272 [INSPIRE].

  53. [53]

    S.J. Huber and T. Konstandin, Gravitational wave production by collisions: more bubbles, JCAP09 (2008) 022 [arXiv:0806.1828] [INSPIRE].

  54. [54]

    G. Boyd et al., Thermodynamics of SU(3) lattice gauge theory, Nucl. Phys.B 469 (1996) 419 [hep-lat/9602007] [INSPIRE].

  55. [55]

    C. Caprini, R. Durrer and G. Servant, The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition, JCAP12 (2009) 024 [arXiv:0909.0622] [INSPIRE].

  56. [56]

    M. Kamionkowski, A. Kosowsky and M.S. Turner, Gravitational radiation from first order phase transitions, Phys. Rev.D 49 (1994) 2837 [astro-ph/9310044] [INSPIRE].

  57. [57]

    C. Caprini, R. Durrer and X. Siemens, Detection of gravitational waves from the QCD phase transition with pulsar timing arrays, Phys. Rev.D 82 (2010) 063511 [arXiv:1007.1218] [INSPIRE].

  58. [58]

    C.J. Hogan, Nucleation of cosmological phase transitions, Phys. Lett.B 133 (1983) 172.

  59. [59]

    C.J. Moore, R.H. Cole and C.P.L. Berry, Gravitational-wave sensitivity curves, Class. Quant. Grav.32 (2015) 015014 [arXiv:1408.0740] [INSPIRE].

  60. [60]

    P. Schwaller, Gravitational waves from a dark phase transition, Phys. Rev. Lett.115 (2015) 181101 [arXiv:1504.07263] [INSPIRE].

  61. [61]

    A. Addazi, Limiting first order phase transitions in dark gauge sectors from gravitational waves experiments, Mod. Phys. Lett.A 32 (2017) 1750049 [arXiv:1607.08057] [INSPIRE].

  62. [62]

    R.D. Peccei and H.R. Quinn, CP conservation in the presence of instantons, Phys. Rev. Lett.38 (1977) 1440 [INSPIRE].

  63. [63]

    R.D. Peccei and H.R. Quinn, Constraints imposed by CP conservation in the presence of instantons, Phys. Rev.D 16 (1977) 1791 [INSPIRE].

  64. [64]

    S. Weinberg, A new light boson?, Phys. Rev. Lett.40 (1978) 223 [INSPIRE].

  65. [65]

    F. Wilczek, Problem of strong P and T invariance in the presence of instantons, Phys. Rev. Lett.40 (1978) 279 [INSPIRE].

  66. [66]

    S. Dürr, Z. Fodor, C. Hölbling and T. Kurth, Precision study of the SU(3) topological susceptibility in the continuum, JHEP04 (2007) 055 [hep-lat/0612021] [INSPIRE].

  67. [67]

    V.A. Rubakov, Grand unification and heavy axion, JETP Lett.65 (1997) 621 [hep-ph/9703409] [INSPIRE].

  68. [68]

    Z. Berezhiani, L. Gianfagna and M. Giannotti, Strong CP problem and mirror world: the Weinberg-Wilczek axion revisited, Phys. Lett.B 500 (2001) 286 [hep-ph/0009290] [INSPIRE].

  69. [69]

    A. Hook, Anomalous solutions to the strong CP problem, Phys. Rev. Lett.114 (2015) 141801 [arXiv:1411.3325] [INSPIRE].

  70. [70]

    H. Fukuda, K. Harigaya, M. Ibe and T.T. Yanagida, Model of visible QCD axion, Phys. Rev.D 92 (2015) 015021 [arXiv:1504.06084] [INSPIRE].

  71. [71]

    A. Sommerfeld, Über die Beugung und Bremsung der Elektronen, Ann. Phys.403 (1931) 257.

  72. [72]

    J. Ellis, M.K. Gaillard and D. Nanopoulos, A phenomenological profile of the Higgs boson, Nucl. Phys.B 106 (1976) 292.

  73. [73]

    L. Resnick, M.K. Sundaresan and P.J.S. Watson, Is there a light scalar boson?, Phys. Rev.D 8 (1973) 172 [INSPIRE].

  74. [74]

    E.D. Carlson, M.E. Machacek and L.J. Hall, Self-interacting dark matter, Astrophys. J.398 (1992) 43 [INSPIRE].

  75. [75]

    Y. Hochberg, E. Kuflik, T. Volansky and J.G. Wacker, Mechanism for thermal relic dark matter of strongly interacting massive particles, Phys. Rev. Lett.113 (2014) 171301 [arXiv:1402.5143] [INSPIRE].

  76. [76]

    L. Forestell, D.E. Morrissey and K. Sigurdson, Non-abelian dark forces and the relic densities of dark glueballs, Phys. Rev.D 95 (2017) 015032 [arXiv:1605.08048] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Correspondence to David Dunsky.

Additional information

ArXiv ePrint:1908.02756

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dunsky, D., Hall, L.J. & Harigaya, K. Dark matter, dark radiation and gravitational waves from mirror Higgs parity. J. High Energ. Phys. 2020, 78 (2020).

Download citation


  • Beyond Standard Model
  • Cosmology of Theories beyond the SM
  • Higgs Physics