Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Hints of unitarity at large N in the O(N )3 tensor field theory

  • 5 Accesses


We compute the OPE coefficients of the bosonic tensor model of [1] for three point functions with two fields and a bilinear with zero and non-zero spin. We find that all the OPE coefficients are real in the case of an imaginary tetrahedral coupling constant, while one of them is not real in the case of a real coupling. We also discuss the operator spectrum of the free theory based on the character decomposition of the partition function.

A preprint version of the article is available at ArXiv.


  1. [1]

    D. Benedetti, R. Gurau and S. Harribey, Line of fixed points in a bosonic tensor model, JHEP 06 (2019) 053 [arXiv:1903.03578] [INSPIRE].

  2. [2]

    V. Bonzom, R. Gurau, A. Riello and V. Rivasseau, Critical behavior of colored tensor models in the large N limit, Nucl. Phys. B 853 (2011) 174 [arXiv:1105.3122] [INSPIRE].

  3. [3]

    R. Gurau, Random tensors, Oxford University Press, Oxford, U.K. (2016).

  4. [4]

    I.R. Klebanov, F. Popov and G. Tarnopolsky, TASI lectures on large N tensor models, PoS(TASI2017)004 (2018) [arXiv:1808.09434] [INSPIRE].

  5. [5]

    S. Prakash and R. Sinha, Melonic dominance in subchromatic sextic tensor models, arXiv:1908.07178 [INSPIRE].

  6. [6]

    R. Guida and J. Zinn-Justin, Critical exponents of the N vector model, J. Phys. A 31 (1998) 8103 [cond-mat/9803240] [INSPIRE].

  7. [7]

    M. Moshe and J. Zinn-Justin, Quantum field theory in the large N limit: a review, Phys. Rept. 385 (2003) 69 [hep-th/0306133] [INSPIRE].

  8. [8]

    G. ’t Hooft, A planar diagram theory for strong interactions, Nucl. Phys. B 72 (1974) 461 [INSPIRE].

  9. [9]

    E. Brézin, C. Itzykson, G. Parisi and J.B. Zuber, Planar diagrams, Commun. Math. Phys. 59 (1978) 35 [INSPIRE].

  10. [10]

    P. Di Francesco, P.H. Ginsparg and J. Zinn-Justin, 2D gravity and random matrices, Phys. Rept. 254 (1995) 1 [hep-th/9306153] [INSPIRE].

  11. [11]

    F. Ferrari, The large D limit of planar diagrams, arXiv:1701.01171 [INSPIRE].

  12. [12]

    F. Ferrari, V. Rivasseau and G. Valette, A new large N expansion for general matrix-tensor models, Commun. Math. Phys. 370 (2019) 403 [arXiv:1709.07366] [INSPIRE].

  13. [13]

    T. Azeyanagi, F. Ferrari, P. Gregori, L. Leduc and G. Valette, More on the new large D limit of matrix models, Annals Phys. 393 (2018) 308 [arXiv:1710.07263] [INSPIRE].

  14. [14]

    J. Ambjørn, B. Durhuus and T. Jonsson, Three-dimensional simplicial quantum gravity and generalized matrix models, Mod. Phys. Lett. A 6 (1991) 1133 [INSPIRE].

  15. [15]

    N. Sasakura, Tensor model for gravity and orientability of manifold, Mod. Phys. Lett. A 6 (1991) 2613 [INSPIRE].

  16. [16]

    R. Gurau, Colored group field theory, Commun. Math. Phys. 304 (2011) 69 [arXiv:0907.2582] [INSPIRE].

  17. [17]

    R. Gurau and J.P. Ryan, Colored tensor models — a review, SIGMA 8 (2012) 020 [arXiv:1109.4812] [INSPIRE].

  18. [18]

    E. Witten, An SYK-like model without disorder, J. Phys. A 52 (2019) 474002 [arXiv:1610.09758] [INSPIRE].

  19. [19]

    R. Gurau, The complete 1/N expansion of a SYK-like tensor model, Nucl. Phys. B 916 (2017) 386 [arXiv:1611.04032] [INSPIRE].

  20. [20]

    I.R. Klebanov and G. Tarnopolsky, Uncolored random tensors, melon diagrams and the Sachdev-Ye-Kitaev models, Phys. Rev. D 95 (2017) 046004 [arXiv:1611.08915] [INSPIRE].

  21. [21]

    C. Peng, M. Spradlin and A. Volovich, A supersymmetric SYK-like tensor model, JHEP 05 (2017) 062 [arXiv:1612.03851] [INSPIRE].

  22. [22]

    C. Krishnan, S. Sanyal and P.N. Bala Subramanian, Quantum chaos and holographic tensor models, JHEP 03 (2017) 056 [arXiv:1612.06330] [INSPIRE].

  23. [23]

    C. Krishnan, K.V. Pavan Kumar and D. Rosa, Contrasting SYK-like models, JHEP 01 (2018) 064 [arXiv:1709.06498] [INSPIRE].

  24. [24]

    K. Bulycheva, I.R. Klebanov, A. Milekhin and G. Tarnopolsky, Spectra of operators in large N tensor models, Phys. Rev. D 97 (2018) 026016 [arXiv:1707.09347] [INSPIRE].

  25. [25]

    S. Choudhury, A. Dey, I. Halder, L. Janagal, S. Minwalla and R. Poojary, Notes on melonic O(N )q−1tensor models, JHEP 06 (2018) 094 [arXiv:1707.09352] [INSPIRE].

  26. [26]

    N. Halmagyi and S. Mondal, Tensor models for black hole probes, arXiv:1711.04385 [INSPIRE].

  27. [27]

    I.R. Klebanov, A. Milekhin, F. Popov and G. Tarnopolsky, Spectra of eigenstates in fermionic tensor quantum mechanics, Phys. Rev. D 97 (2018) 106023 [arXiv:1802.10263] [INSPIRE].

  28. [28]

    S. Carrozza and V. Pozsgay, SYK-like tensor quantum mechanics with Sp(N ) symmetry, Nucl. Phys. B 941 (2019) 28 [arXiv:1809.07753] [INSPIRE].

  29. [29]

    I.R. Klebanov, P.N. Pallegar and F.K. Popov, Majorana fermion quantum mechanics for higher rank tensors, Phys. Rev. D 100 (2019) 086003 [arXiv:1905.06264] [INSPIRE].

  30. [30]

    F. Ferrari and F.I. Schaposnik Massolo, Phases of melonic quantum mechanics, Phys. Rev. D 100 (2019) 026007 [arXiv:1903.06633] [INSPIRE].

  31. [31]

    N. Delporte and V. Rivasseau, The tensor track V: holographic tensors, in Proceedings, 17thhellenic school and workshops on elementary particle physics and gravity (CORFU2017), Corfu, Greece, 2–28 September 2017 [arXiv:1804.11101] [INSPIRE].

  32. [32]

    S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].

  33. [33]

    A. Kitaev, Hidden correlations in the Hawking radiation and thermal noise, in KITP strings seminar , University of California, Santa Barbara, CA, U.S.A., 12 February 2015.

  34. [34]

    A. Kitaev, A simple model of quantum holography (part 1, in Entanglement 2015 program , University of California, Santa Barbara, CA, U.S.A., 7 April 2015.

  35. [35]

    A. Kitaev, A simple model of quantum holography (part 2), in Entanglement 2015 program , University of California, Santa Barbara, CA, U.S.A., 27 May 2015.

  36. [36]

    J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].

  37. [37]

    J. Polchinski and V. Rosenhaus, The spectrum in the Sachdev-Ye-Kitaev model, JHEP 04 (2016) 001 [arXiv:1601.06768] [INSPIRE].

  38. [38]

    A. Jevicki, K. Suzuki and J. Yoon, Bi-local holography in the SYK model, JHEP 07 (2016) 007 [arXiv:1603.06246] [INSPIRE].

  39. [39]

    D.J. Gross and V. Rosenhaus, A generalization of Sachdev-Ye-Kitaev, JHEP 02 (2017) 093 [arXiv:1610.01569] [INSPIRE].

  40. [40]

    S. Giombi, I.R. Klebanov and G. Tarnopolsky, Bosonic tensor models at large N and small ϵ, Phys. Rev. D 96 (2017) 106014 [arXiv:1707.03866] [INSPIRE].

  41. [41]

    S. Prakash and R. Sinha, A complex fermionic tensor model in d dimensions, JHEP 02 (2018) 086 [arXiv:1710.09357] [INSPIRE].

  42. [42]

    D. Benedetti, S. Carrozza, R. Gurau and A. Sfondrini, Tensorial Gross-Neveu models, JHEP 01 (2018) 003 [arXiv:1710.10253] [INSPIRE].

  43. [43]

    S. Giombi, I.R. Klebanov, F. Popov, S. Prakash and G. Tarnopolsky, Prismatic large N models for bosonic tensors, Phys. Rev. D 98 (2018) 105005 [arXiv:1808.04344] [INSPIRE].

  44. [44]

    D. Benedetti and N. Delporte, Phase diagram and fixed points of tensorial Gross-Neveu models in three dimensions, JHEP 01 (2019) 218 [arXiv:1810.04583] [INSPIRE].

  45. [45]

    F.K. Popov, Supersymmetric tensor model at large N and small ϵ, Phys. Rev. D 101 (2020) 026020 [arXiv:1907.02440] [INSPIRE].

  46. [46]

    O.W. Greenberg, Generalized free fields and models of local field theory, Annals Phys. 16 (1961) 158 [INSPIRE].

  47. [47]

    M.E. Fisher, S.-K. Ma and B.G. Nickel, Critical exponents for long-range interactions, Phys. Rev. Lett. 29 (1972) 917 [INSPIRE].

  48. [48]

    J. Sak, Recursion relations and fixed points for ferromagnets with long-range interactions, Phys. Rev. B 8 (1973) 281.

  49. [49]

    D.C. Brydges, P.K. Mitter and B. Scoppola, Critical4)3,Commun. Math. Phys. 240 (2003) 281 [hep-th/0206040] [INSPIRE].

  50. [50]

    A. Abdesselam, A complete renormalization group trajectory between two fixed points, Commun. Math. Phys. 276 (2007) 727 [math-ph/0610018] [INSPIRE].

  51. [51]

    E. Brezin, G. Parisi and F. Ricci-Tersenghi, The crossover region between long-range and short-range interactions for the critical exponents, J. Stat. Phys. 157 (2014) 855 [arXiv:1407.3358].

  52. [52]

    N. Defenu, A. Trombettoni and A. Codello, Fixed-point structure and effective fractional dimensionality for O(N ) models with long-range interactions, Phys. Rev. E 92 (2015) 052113 [arXiv:1409.8322] [INSPIRE].

  53. [53]

    M.F. Paulos, S. Rychkov, B.C. van Rees and B. Zan, Conformal invariance in the long-range Ising model, Nucl. Phys. B 902 (2016) 246 [arXiv:1509.00008] [INSPIRE].

  54. [54]

    C. Behan, L. Rastelli, S. Rychkov and B. Zan, A scaling theory for the long-range to short-range crossover and an infrared duality, J. Phys. A 50 (2017) 354002 [arXiv:1703.05325] [INSPIRE].

  55. [55]

    M.E. Fisher, Yang-Lee edge singularity and ϕ3field theory, Phys. Rev. Lett. 40 (1978) 1610 [INSPIRE].

  56. [56]

    J.L. Cardy, Conformal invariance and the Yang-Lee edge singularity in two-dimensions, Phys. Rev. Lett. 54 (1985) 1354 [INSPIRE].

  57. [57]

    V. Gorbenko, S. Rychkov and B. Zan, Walking, weak first-order transitions and complex CFTs II. Two-dimensional Potts model at Q > 4, SciPost Phys. 5 (2018) 050 [arXiv:1808.04380] [INSPIRE].

  58. [58]

    D.J. Gross and V. Rosenhaus, A line of CFTs: from generalized free fields to SYK, JHEP 07 (2017) 086 [arXiv:1706.07015] [INSPIRE].

  59. [59]

    S. Carrozza and A. Tanasa, O(N ) random tensor models, Lett. Math. Phys. 106 (2016) 1531 [arXiv:1512.06718] [INSPIRE].

  60. [60]

    D. Benedetti and R. Gurau, 2PI effective action for the SYK model and tensor field theories, JHEP 05 (2018) 156 [arXiv:1802.05500] [INSPIRE].

  61. [61]

    D. Simmons-Duffin, D. Stanford and E. Witten, A spacetime derivation of the Lorentzian OPE inversion formula, JHEP 07 (2018) 085 [arXiv:1711.03816] [INSPIRE].

  62. [62]

    J. Liu, E. Perlmutter, V. Rosenhaus and D. Simmons-Duffin, d-dimensional SYK, AdS loops and 6j symbols, JHEP 03 (2019) 052 [arXiv:1808.00612] [INSPIRE].

  63. [63]

    R. Gurau, Notes on tensor models and tensor field theories, arXiv:1907.03531 [INSPIRE].

  64. [64]

    A. Kitaev, Notes on \( \tilde{\mathrm{SL}} \) (2, R) representations, arXiv:1711.08169 [INSPIRE].

  65. [65]

    S. Giombi, Higher spin-CFT duality, in Proceedings, theoretical advanced study institute in elementary particle physics: new frontiers in fields and strings (TASI 2015), Boulder, CO, U.S.A., 1–26 June 2015, World Scientific, Singapore (2017), pg. 137 [arXiv:1607.02967] [INSPIRE].

  66. [66]

    B. Sundborg, The Hagedorn transition, deconfinement and N = 4 SYM theory, Nucl. Phys. B 573 (2000) 349 [hep-th/9908001] [INSPIRE].

  67. [67]

    O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas and M. Van Raamsdonk, The Hagedorn-deconfinement phase transition in weakly coupled large N gauge theories, Adv. Theor. Math. Phys. 8 (2004) 603 [hep-th/0310285] [INSPIRE].

  68. [68]

    R. Gurau, Notes on tensor models and tensor field theories, arXiv:1907.03531 [INSPIRE].

  69. [69]

    A. Jevicki, K. Jin and J. Yoon, 1/N and loop corrections in higher spin AdS4/C F T3duality, Phys. Rev. D 89 (2014) 085039 [arXiv:1401.3318] [INSPIRE].

  70. [70]

    S. Giombi, I.R. Klebanov and A.A. Tseytlin, Partition functions and Casimir energies in higher spin AdSd+1/C FTd, Phys. Rev. D 90 (2014) 024048 [arXiv:1402.5396] [INSPIRE].

  71. [71]

    M. Beccaria and A.A. Tseytlin, Partition function of free conformal fields in 3-plet representation, JHEP 05 (2017) 053 [arXiv:1703.04460] [INSPIRE].

  72. [72]

    C.R. Graham, R. Jenne, L.J. Mason and G.A.J. Sparling, Conformally invariant powers of the Laplacian, I: existence, J. London Math. Soc. s2-46 (1992) 557.

  73. [73]

    M. Flato and C. Fronsdal, One massless particle equals two Dirac singletons: elementary particles in a curved space. 6, Lett. Math. Phys. 2 (1978) 421 [INSPIRE].

  74. [74]

    F.A. Dolan, Character formulae and partition functions in higher dimensional conformal field theory, J. Math. Phys. 47 (2006) 062303 [hep-th/0508031] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Correspondence to Kenta Suzuki.

Additional information

ArXiv ePrint: 1909.07767

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Benedetti, D., Gurau, R., Harribey, S. et al. Hints of unitarity at large N in the O(N )3 tensor field theory. J. High Energ. Phys. 2020, 72 (2020).

Download citation


  • 1/N Expansion
  • Conformal Field Theory
  • Field Theories in Lower Dimensions
  • Global Symmetries