Heavy neutrinos in displaced vertex searches at the LHC and HL-LHC

Abstract

We study the sensitivity of displaced vertex searches for heavy neutrinos produced in W boson decays in the LHC detectors ATLAS, CMS and LHCb. We also propose a new search that uses the muon chambers to detect muons from heavy neutrino decays outside the tracker. The sensitivity estimates are based on benchmark models in which the heavy neutrinos mix exclusively with one of the three Standard Model generations. In the most sensitive mass regime the displaced vertex searches can improve existing constraints on the mixing with the first two SM generations by more than four orders of magnitude and by three orders of magnitude for the mixing with the third generation.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    P. Minkowski, μ → eγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. 67B (1977) 421 [INSPIRE].

  2. [2]

    M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].

  3. [3]

    R.N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Nonconservation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].

  4. [4]

    T. Yanagida, Horizontal Symmetry and Masses of Neutrinos, Prog. Theor. Phys. 64 (1980) 1103 [INSPIRE].

  5. [5]

    J. Schechter and J.W.F. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].

  6. [6]

    J. Schechter and J.W.F. Valle, Neutrino Decay and Spontaneous Violation of Lepton Number, Phys. Rev. D 25 (1982) 774 [INSPIRE].

  7. [7]

    M. Drewes, The Phenomenology of Right Handed Neutrinos, Int. J. Mod. Phys. E 22 (2013) 1330019 [arXiv:1303.6912] [INSPIRE].

  8. [8]

    L. Canetti, M. Drewes and M. Shaposhnikov, Matter and Antimatter in the Universe, New J. Phys. 14 (2012) 095012 [arXiv:1204.4186] [INSPIRE].

  9. [9]

    M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].

  10. [10]

    E.J. Chun et al., Probing Leptogenesis, Int. J. Mod. Phys. A 33 (2018) 1842005 [arXiv:1711.02865] [INSPIRE].

  11. [11]

    S. Dodelson and L.M. Widrow, Sterile-neutrinos as dark matter, Phys. Rev. Lett. 72 (1994) 17 [hep-ph/9303287] [INSPIRE].

  12. [12]

    M. Drewes et al., A White Paper on keV Sterile Neutrino Dark Matter, JCAP 01 (2017) 025 [arXiv:1602.04816] [INSPIRE].

  13. [13]

    A. Boyarsky, M. Drewes, T. Lasserre, S. Mertens and O. Ruchayskiy, Sterile Neutrino Dark Matter, Prog. Part. Nucl. Phys. 104 (2019) 1 [arXiv:1807.07938] [INSPIRE].

  14. [14]

    K.N. Abazajian et al., Light Sterile Neutrinos: A White Paper, arXiv:1204.5379 [INSPIRE].

  15. [15]

    Y. Cai, T. Han, T. Li and R. Ruiz, Lepton Number Violation: Seesaw Models and Their Collider Tests, Front. Phys. 6 (2018) 40 [arXiv:1711.02180] [INSPIRE].

  16. [16]

    F.F. Deppisch, P.S. Bhupal Dev and A. Pilaftsis, Neutrinos and Collider Physics, New J. Phys. 17 (2015) 075019 [arXiv:1502.06541] [INSPIRE].

  17. [17]

    R.E. Shrock, General Theory of Weak Leptonic and Semileptonic Decays. 1. Leptonic Pseudoscalar Meson Decays, with Associated Tests For and Bounds on, Neutrino Masses and Lepton Mixing, Phys. Rev. D 24 (1981) 1232 [INSPIRE].

  18. [18]

    R.E. Shrock, General Theory of Weak Processes Involving Neutrinos. 2. Pure Leptonic Decays, Phys. Rev. D 24 (1981) 1275 [INSPIRE].

  19. [19]

    D. Gorbunov and M. Shaposhnikov, How to find neutral leptons of the νMSM?, JHEP 10 (2007) 015 [Erratum ibid. 11 (2013) 101] [arXiv:0705.1729] [INSPIRE].

  20. [20]

    A. Atre, T. Han, S. Pascoli and B. Zhang, The Search for Heavy Majorana Neutrinos, JHEP 05 (2009) 030 [arXiv:0901.3589] [INSPIRE].

  21. [21]

    L. Canetti, M. Drewes, T. Frossard and M. Shaposhnikov, Dark Matter, Baryogenesis and Neutrino Oscillations from Right Handed Neutrinos, Phys. Rev. D 87 (2013) 093006 [arXiv:1208.4607] [INSPIRE].

  22. [22]

    K. Bondarenko, A. Boyarsky, D. Gorbunov and O. Ruchayskiy, Phenomenology of GeV-scale Heavy Neutral Leptons, JHEP 11 (2018) 032 [arXiv:1805.08567] [INSPIRE].

  23. [23]

    O. Ruchayskiy and A. Ivashko, Restrictions on the lifetime of sterile neutrinos from primordial nucleosynthesis, JCAP 10 (2012) 014 [arXiv:1202.2841] [INSPIRE].

  24. [24]

    P. Hernández, M. Kekic and J. Lopez-Pavon, Neff in low-scale seesaw models versus the lightest neutrino mass, Phys. Rev. D 90 (2014) 065033 [arXiv:1406.2961] [INSPIRE].

  25. [25]

    E.K. Akhmedov, V.A. Rubakov and A.Y. Smirnov, Baryogenesis via neutrino oscillations, Phys. Rev. Lett. 81 (1998) 1359 [hep-ph/9803255] [INSPIRE].

  26. [26]

    T. Asaka and M. Shaposhnikov, The νMSM, dark matter and baryon asymmetry of the universe, Phys. Lett. B 620 (2005) 17 [hep-ph/0505013] [INSPIRE].

  27. [27]

    F. Vissani, Do experiments suggest a hierarchy problem?, Phys. Rev. D 57 (1998) 7027 [hep-ph/9709409] [INSPIRE].

  28. [28]

    T. Asaka, S. Blanchet and M. Shaposhnikov, The nuMSM, dark matter and neutrino masses, Phys. Lett. B 631 (2005) 151 [hep-ph/0503065] [INSPIRE].

  29. [29]

    L. Canetti, M. Drewes and M. Shaposhnikov, Sterile Neutrinos as the Origin of Dark and Baryonic Matter, Phys. Rev. Lett. 110 (2013) 061801 [arXiv:1204.3902] [INSPIRE].

  30. [30]

    M. Shaposhnikov and C. Wetterich, Asymptotic safety of gravity and the Higgs boson mass, Phys. Lett. B 683 (2010) 196 [arXiv:0912.0208] [INSPIRE].

  31. [31]

    S. Pascoli, R. Ruiz and C. Weiland, Heavy neutrinos with dynamic jet vetoes: multilepton searches at \( \sqrt{s} \) = 14, 27 and 100 TeV, JHEP 06 (2019) 049 [arXiv:1812.08750] [INSPIRE].

  32. [32]

    M. Drewes, A. Giammanco, J. Hajer, M. Lucente and O. Mattelaer, Searching for New Long Lived Particles in Heavy Ion Collisions at the LHC, arXiv:1810.09400 [INSPIRE].

  33. [33]

    M. Drewes, A. Giammanco, J. Hajer and M. Lucente, Long Lived Particles Searches in Heavy Ion Collisions at the LHC, arXiv:1905.09828 [INSPIRE].

  34. [34]

    J.L. Feng, I. Galon, F. Kling and S. Trojanowski, ForwArd Search ExpeRiment at the LHC, Phys. Rev. D 97 (2018) 035001 [arXiv:1708.09389] [INSPIRE].

  35. [35]

    J.P. Chou, D. Curtin and H.J. Lubatti, New Detectors to Explore the Lifetime Frontier, Phys. Lett. B 767 (2017) 29 [arXiv:1606.06298] [INSPIRE].

  36. [36]

    F. Kling and S. Trojanowski, Heavy Neutral Leptons at FASER, Phys. Rev. D 97 (2018) 095016 [arXiv:1801.08947] [INSPIRE].

  37. [37]

    V.V. Gligorov, S. Knapen, M. Papucci and D.J. Robinson, Searching for Long-lived Particles: A Compact Detector for Exotics at LHCb, Phys. Rev. D 97 (2018) 015023 [arXiv:1708.09395] [INSPIRE].

  38. [38]

    D. Curtin et al., Long-Lived Particles at the Energy Frontier: The MATHUSLA Physics Case, Rept. Prog. Phys. 82 (2019) 116201 [arXiv:1806.07396] [INSPIRE].

  39. [39]

    D. Dercks, H.K. Dreiner, M. Hirsch and Z.S. Wang, Long-Lived Fermions at AL3X, Phys. Rev. D 99 (2019) 055020 [arXiv:1811.01995] [INSPIRE].

  40. [40]

    MATHUSLA collaboration, A Letter of Intent for MATHUSLA: A Dedicated Displaced Vertex Detector above ATLAS or CMS., arXiv:1811.00927 [INSPIRE].

  41. [41]

    J.C. Helo, M. Hirsch and Z.S. Wang, Heavy neutral fermions at the high-luminosity LHC, JHEP 07 (2018) 056 [arXiv:1803.02212] [INSPIRE].

  42. [42]

    NA62 collaboration, Search for heavy neutral lepton production in K + decays, Phys. Lett. B 778 (2018) 137 [arXiv:1712.00297] [INSPIRE].

  43. [43]

    M. Drewes, J. Hajer, J. Klaric and G. Lanfranchi, NA62 sensitivity to heavy neutral leptons in the low scale seesaw model, JHEP 07 (2018) 105 [arXiv:1801.04207] [INSPIRE].

  44. [44]

    T2K collaboration, Search for heavy neutrinos with the T2K near detector ND280, Phys. Rev. D 100 (2019) 052006 [arXiv:1902.07598] [INSPIRE].

  45. [45]

    I. Krasnov, DUNE prospects in the search for sterile neutrinos, Phys. Rev. D 100 (2019) 075023 [arXiv:1902.06099] [INSPIRE].

  46. [46]

    S. Alekhin et al., A facility to Search for Hidden Particles at the CERN SPS: the SHiP physics case, Rept. Prog. Phys. 79 (2016) 124201 [arXiv:1504.04855] [INSPIRE].

  47. [47]

    SHiP collaboration, A facility to Search for Hidden Particles (SHiP) at the CERN SPS, arXiv:1504.04956 [INSPIRE].

  48. [48]

    SHiP collaboration, Sensitivity of the SHiP experiment to Heavy Neutral Leptons, JHEP 04 (2019) 077 [arXiv:1811.00930] [INSPIRE].

  49. [49]

    J. Beacham et al., Physics Beyond Colliders at CERN: Beyond the Standard Model Working Group Report, J. Phys. G 47 (2020) 010501 [arXiv:1901.09966] [INSPIRE].

  50. [50]

    CMS collaboration, Search for heavy neutral leptons in events with three charged leptons in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. Lett. 120 (2018) 221801 [arXiv:1802.02965] [INSPIRE].

  51. [51]

    CMS collaboration, Search for heavy Majorana neutrinos in the same-sign dilepton channel in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, CMS-PAS-EXO-17-028.

  52. [52]

    DELPHI collaboration, Search for neutral heavy leptons produced in Z decays, Z. Phys. C 74 (1997) 57 [Erratum ibid. C 75 (1997) 580] [INSPIRE].

  53. [53]

    ATLAS collaboration, Search for heavy neutral leptons in decays of W bosons produced in 13 TeV pp collisions using prompt and displaced signatures with the ATLAS detector, JHEP 10 (2019) 265 [arXiv:1905.09787] [INSPIRE].

  54. [54]

    J.C. Helo, M. Hirsch and S. Kovalenko, Heavy neutrino searches at the LHC with displaced vertices, Phys. Rev. D 89 (2014) 073005 [Erratum ibid. D 93 (2016) 099902] [arXiv:1312.2900] [INSPIRE].

  55. [55]

    E. Izaguirre and B. Shuve, Multilepton and Lepton Jet Probes of Sub-Weak-Scale Right-Handed Neutrinos, Phys. Rev. D 91 (2015) 093010 [arXiv:1504.02470] [INSPIRE].

  56. [56]

    A.M. Gago, P. Hernández, J. Jones-Pérez, M. Losada and A. Moreno Bricen˜o, Probing the Type I Seesaw Mechanism with Displaced Vertices at the LHC, Eur. Phys. J. C 75 (2015) 470 [arXiv:1505.05880] [INSPIRE].

  57. [57]

    C.O. Dib and C.S. Kim, Discovering sterile Neutrinos ligther than MW at the LHC, Phys. Rev. D 92 (2015) 093009 [arXiv:1509.05981] [INSPIRE].

  58. [58]

    C.O. Dib, C.S. Kim, K. Wang and J. Zhang, Distinguishing Dirac/Majorana Sterile Neutrinos at the LHC, Phys. Rev. D 94 (2016) 013005 [arXiv:1605.01123] [INSPIRE].

  59. [59]

    S. Antusch, E. Cazzato and O. Fischer, Sterile neutrino searches via displaced vertices at LHCb, Phys. Lett. B 774 (2017) 114 [arXiv:1706.05990] [INSPIRE].

  60. [60]

    G. Cvetič, A. Das and J. Zamora-Saá, Probing heavy neutrino oscillations in rare W boson decays, J. Phys. G 46 (2019) 075002 [arXiv:1805.00070] [INSPIRE].

  61. [61]

    G. Cottin, J.C. Helo and M. Hirsch, Searches for light sterile neutrinos with multitrack displaced vertices, Phys. Rev. D 97 (2018) 055025 [arXiv:1801.02734] [INSPIRE].

  62. [62]

    G. Cottin, J.C. Helo and M. Hirsch, Displaced vertices as probes of sterile neutrino mixing at the LHC, Phys. Rev. D 98 (2018) 035012 [arXiv:1806.05191] [INSPIRE].

  63. [63]

    A. Abada, N. Bernal, M. Losada and X. Marcano, Inclusive Displaced Vertex Searches for Heavy Neutral Leptons at the LHC, JHEP 01 (2019) 093 [arXiv:1807.10024] [INSPIRE].

  64. [64]

    I. Boiarska et al., Probing baryon asymmetry of the Universe at LHC and SHiP, arXiv:1902.04535 [INSPIRE].

  65. [65]

    D. Contardo, M. Klute, J. Mans, L. Silvestris and J. Butler, Technical Proposal for the Phase-II Upgrade of the CMS Detector, CERN-LHCC-2015-010.

  66. [66]

    S. Bobrovskyi, W. Buchmüller, J. Hajer and J. Schmidt, Quasi-stable neutralinos at the LHC, JHEP 09 (2011) 119 [arXiv:1107.0926] [INSPIRE].

  67. [67]

    S. Bobrovskyi, J. Hajer and S. Rydbeck, Long-lived higgsinos as probes of gravitino dark matter at the LHC, JHEP 02 (2013) 133 [arXiv:1211.5584] [INSPIRE].

  68. [68]

    CMS collaboration, Search for long-lived particles that decay into final states containing two muons, reconstructed using only the CMS muon chambers, CMS-PAS-EXO-14-012.

  69. [69]

    M. Drewes, B. Garbrecht, D. Gueter and J. Klaric, Testing the low scale seesaw and leptogenesis, JHEP 08 (2017) 018 [arXiv:1609.09069] [INSPIRE].

  70. [70]

    P. Hernández, M. Kekic, J. López-Pavón, J. Racker and N. Rius, Leptogenesis in GeV scale seesaw models, JHEP 10 (2015) 067 [arXiv:1508.03676] [INSPIRE].

  71. [71]

    ATLAS collaboration, Search for long-lived, massive particles in events with displaced vertices and missing transverse momentum in \( \sqrt{s} \) = 13 TeV pp collisions with the ATLAS detector, Phys. Rev. D 97 (2018) 052012 [arXiv:1710.04901] [INSPIRE].

  72. [72]

    B. Shuve and M.E. Peskin, Revision of the LHCb Limit on Majorana Neutrinos, Phys. Rev. D 94 (2016) 113007 [arXiv:1607.04258] [INSPIRE].

  73. [73]

    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].

  74. [74]

    C. Degrande, O. Mattelaer, R. Ruiz and J. Turner, Fully-Automated Precision Predictions for Heavy Neutrino Production Mechanisms at Hadron Colliders, Phys. Rev. D 94 (2016) 053002 [arXiv:1602.06957] [INSPIRE].

  75. [75]

    D. Alva, T. Han and R. Ruiz, Heavy Majorana neutrinos from W γ fusion at hadron colliders, JHEP 02 (2015) 072 [arXiv:1411.7305] [INSPIRE].

  76. [76]

    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

  77. [77]

    J. Alwall, C. Duhr, B. Fuks, O. Mattelaer, D.G. Öztürk and C.-H. Shen, Computing decay rates for new physics theories with FeynRules and MadGraph5 aMC@NLO, Comput. Phys. Commun. 197 (2015) 312 [arXiv:1402.1178] [INSPIRE].

  78. [78]

    S. Frixione, E. Laenen, P. Motylinski and B.R. Webber, Angular correlations of lepton pairs from vector boson and top quark decays in Monte Carlo simulations, JHEP 04 (2007) 081 [hep-ph/0702198] [INSPIRE].

  79. [79]

    P. Artoisenet, R. Frederix, O. Mattelaer and R. Rietkerk, Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations, JHEP 03 (2013) 015 [arXiv:1212.3460] [INSPIRE].

  80. [80]

    T. Sjöstrand et al., An Introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].

  81. [81]

    ATLAS collaboration, Trigger Menu in 2016, ATL-DAQ-PUB-2017-001.

  82. [82]

    LHCb collaboration, Search for Dark Photons Produced in 13 TeV pp Collisions, Phys. Rev. Lett. 120 (2018) 061801 [arXiv:1710.02867] [INSPIRE].

  83. [83]

    DELPHES 3 collaboration, DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].

  84. [84]

    A. Coccaro, D. Curtin, H.J. Lubatti, H. Russell and J. Shelton, Data-driven Model-independent Searches for Long-lived Particles at the LHC, Phys. Rev. D 94 (2016) 113003 [arXiv:1605.02742] [INSPIRE].

  85. [85]

    J. Alimena et al., Searching for Long-Lived Particles beyond the Standard Model at the Large Hadron Collider, arXiv:1903.04497 [INSPIRE].

  86. [86]

    B. Smits, Efficiency Issues for Ray Tracing, J. Graph. Tools 3 (1998) 1.

  87. [87]

    A. Williams, S. Barrus, K. Morley and P. Shirley, An Efficient and Robust Ray-Box Intersection Algorithm, J. Graph. Tools 10 (2005) 49.

  88. [88]

    ATLAS collaboration, Search for long-lived, weakly interacting particles that decay to displaced hadronic jets in proton-proton collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, Phys. Rev. D 92 (2015) 012010 [arXiv:1504.03634] [INSPIRE].

  89. [89]

    G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [Erratum ibid. C 73 (2013) 2501] [arXiv:1007.1727] [INSPIRE].

  90. [90]

    C. Liu and N. Neumeister, Reconstruction of cosmic and beam-halo muons, Eur. Phys. J. C 56 (2008) 449 [INSPIRE].

  91. [91]

    M. Vit, private communication, December 2019.

  92. [92]

    P. Hernández, M. Kekic, J. López-Pavón, J. Racker and J. Salvado, Testable Baryogenesis in Seesaw Models, JHEP 08 (2016) 157 [arXiv:1606.06719] [INSPIRE].

  93. [93]

    S. Antusch et al., Probing Leptogenesis at Future Colliders, JHEP 09 (2018) 124 [arXiv:1710.03744] [INSPIRE].

  94. [94]

    S. Eijima, M. Shaposhnikov and I. Timiryasov, Parameter space of baryogenesis in the νMSM, JHEP 07 (2019) 077 [arXiv:1808.10833] [INSPIRE].

  95. [95]

    M. Drewes and B. Garbrecht, Leptogenesis from a GeV Seesaw without Mass Degeneracy, JHEP 03 (2013) 096 [arXiv:1206.5537] [INSPIRE].

  96. [96]

    L. Canetti, M. Drewes and B. Garbrecht, Probing leptogenesis with GeV-scale sterile neutrinos at LHCb and Belle II, Phys. Rev. D 90 (2014) 125005 [arXiv:1404.7114] [INSPIRE].

  97. [97]

    A. Abada, G. Arcadi, V. Domcke, M. Drewes, J. Klaric and M. Lucente, Low-scale leptogenesis with three heavy neutrinos, JHEP 01 (2019) 164 [arXiv:1810.12463] [INSPIRE].

  98. [98]

    M. Shaposhnikov, A Possible symmetry of the nuMSM, Nucl. Phys. B 763 (2007) 49 [hep-ph/0605047] [INSPIRE].

  99. [99]

    J. Kersten and A.Y. Smirnov, Right-Handed Neutrinos at CERN LHC and the Mechanism of Neutrino Mass Generation, Phys. Rev. D 76 (2007) 073005 [arXiv:0705.3221] [INSPIRE].

  100. [100]

    K. Moffat, S. Pascoli and C. Weiland, Equivalence between massless neutrinos and lepton number conservation in fermionic singlet extensions of the Standard Model, arXiv:1712.07611 [INSPIRE].

  101. [101]

    CMS collaboration, Search for heavy Majorana neutrinos in same-sign dilepton channels in proton-proton collisions at = 13 TeV, JHEP 01 (2019) 122 [arXiv:1806.10905] [INSPIRE].

  102. [102]

    ATLAS collaboration, Search for heavy Majorana or Dirac neutrinos and right-handed W gauge bosons in final states with two charged leptons and two jets at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP 01 (2019) 016 [arXiv:1809.11105] [INSPIRE].

  103. [103]

    G. Anamiati, M. Hirsch and E. Nardi, Quasi-Dirac neutrinos at the LHC, JHEP 10 (2016) 010 [arXiv:1607.05641] [INSPIRE].

  104. [104]

    A. Das, P.S.B. Dev and R.N. Mohapatra, Same Sign versus Opposite S\( \sqrt{s} \)ign Dileptons as a Probe of Low Scale Seesaw Mechanisms, Phys. Rev. D 97 (2018) 015018 [arXiv:1709.06553] [INSPIRE].

  105. [105]

    S. Antusch, E. Cazzato and O. Fischer, Resolvable heavy neutrino-antineutrino oscillations at colliders, Mod. Phys. Lett. A 34 (2019) 1950061 [arXiv:1709.03797] [INSPIRE].

  106. [106]

    P. Hernández, J. Jones-Pérez and O. Suarez-Navarro, Majorana vs Pseudo-Dirac Neutrinos at the ILC, Eur. Phys. J. C 79 (2019) 220 [arXiv:1810.07210] [INSPIRE].

  107. [107]

    M. Drewes, J. Klarić and P. Klose, On Lepton Number Violation in Heavy Neutrino Decays at Colliders, JHEP 11 (2019) 032 [arXiv:1907.13034] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jan Hajer.

Additional information

ArXiv ePrint: 1903.06100

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Drewes, M., Hajer, J. Heavy neutrinos in displaced vertex searches at the LHC and HL-LHC. J. High Energ. Phys. 2020, 70 (2020). https://doi.org/10.1007/JHEP02(2020)070

Download citation

Keywords

  • Beyond Standard Model
  • Neutrino Physics