Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Conformal properties of soft-operators. Part II. Use of null-states

  • 15 Accesses

Abstract

Representations of the (Lorentz) conformal group with the soft operators as highest weight vectors have two universal properties, which we clearly state in this paper. Given a soft operator with a certain dimension and spin, the first property is about the existence of “(large) gauge transformation” that acts on the soft operator. The second property is the decoupling of (large) gauge-invariant null-states of the soft operators from the S-matrix elements. In each case, the decoupling equation has the form of zero field-strength condition with the soft operator as the (gauge) potential. Null-state decoupling effectively reduces the number of polarisation states of the soft particle and is crucial in deriving soft-theorems from the Ward identities of asymptotic symmetries. To the best of our understanding, these properties are not directly related to the Lorentz invariance of the S-matrix or the existence of asymptotic symmetries. We also verify that the results obtained from the decoupling of null-states are consistent with the leading and subleading soft-theorems with finite energy massive and massless particles in the external legs.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    A. Strominger, Asymptotic Symmetries of Yang-Mills Theory, JHEP07 (2014) 151 [arXiv:1308.0589] [INSPIRE].

  2. [2]

    A. Strominger, On BMS Invariance of Gravitational Scattering, JHEP07 (2014) 152 [arXiv:1312.2229] [INSPIRE].

  3. [3]

    T. He, V. Lysov, P. Mitra and A. Strominger, BMS supertranslations and Weinberg’s soft graviton theorem, JHEP05 (2015) 151 [arXiv:1401.7026] [INSPIRE].

  4. [4]

    A. Strominger and A. Zhiboedov, Gravitational Memory, BMS Supertranslations and Soft Theorems, JHEP01 (2016) 086 [arXiv:1411.5745] [INSPIRE].

  5. [5]

    T. He, P. Mitra, A.P. Porfyriadis and A. Strominger, New Symmetries of Massless QED, JHEP10 (2014) 112 [arXiv:1407.3789] [INSPIRE].

  6. [6]

    D. Kapec, M. Pate and A. Strominger, New Symmetries of QED, Adv. Theor. Math. Phys.21 (2017) 1769 [arXiv:1506.02906] [INSPIRE].

  7. [7]

    D. Kapec, V. Lysov and A. Strominger, Asymptotic Symmetries of Massless QED in Even Dimensions, Adv. Theor. Math. Phys.21 (2017) 1747 [arXiv:1412.2763] [INSPIRE].

  8. [8]

    D. Kapec, V. Lysov, S. Pasterski and A. Strominger, Higher-dimensional supertranslations and Weinberg’s soft graviton theorem, Ann. Math. Sci. Appl.02 (2017) 69 [arXiv:1502.07644] [INSPIRE].

  9. [9]

    M. Pate, A.-M. Raclariu and A. Strominger, Gravitational Memory in Higher Dimensions, JHEP06 (2018) 138 [arXiv:1712.01204] [INSPIRE].

  10. [10]

    D. Kapec, V. Lysov, S. Pasterski and A. Strominger, Semiclassical Virasoro symmetry of the quantum gravity \( \mathcal{S} \)-matrix, JHEP08 (2014) 058 [arXiv:1406.3312] [INSPIRE].

  11. [11]

    D. Kapec, P. Mitra, A.-M. Raclariu and A. Strominger, 2D Stress Tensor for 4D Gravity, Phys. Rev. Lett.119 (2017) 121601 [arXiv:1609.00282] [INSPIRE].

  12. [12]

    T. He, D. Kapec, A.-M. Raclariu and A. Strominger, Loop-Corrected Virasoro Symmetry of 4D Quantum Gravity, JHEP08 (2017) 050 [arXiv:1701.00496] [INSPIRE].

  13. [13]

    M. Campiglia and A. Laddha, Asymptotic symmetries of QED and Weinberg’s soft photon theorem, JHEP07 (2015) 115 [arXiv:1505.05346] [INSPIRE].

  14. [14]

    M. Campiglia and A. Laddha, Asymptotic symmetries of gravity and soft theorems for massive particles, JHEP12 (2015) 094 [arXiv:1509.01406] [INSPIRE].

  15. [15]

    H. Bondi, M.G.J. van der Burg and A.W.K. Metzner, Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond.A 269 (1962) 21.

  16. [16]

    R.K. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times, Proc. Roy. Soc. Lond.A 270 (1962) 103.

  17. [17]

    R. Sachs, Asymptotic symmetries in gravitational theory, Phys. Rev.128 (1962) 2851 [INSPIRE].

  18. [18]

    G. Barnich and C. Troessaert, Symmetries of asymptotically flat 4 dimensional spacetimes at null infinity revisited, Phys. Rev. Lett.105 (2010) 111103 [arXiv:0909.2617] [INSPIRE].

  19. [19]

    A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory, arXiv:1703.05448 [INSPIRE].

  20. [20]

    S. Banerjee, P. Pandey and P. Paul, Conformal properties of soft-operators — 1: Use of null-states, arXiv:1902.02309 [INSPIRE].

  21. [21]

    S. Weinberg, Photons and Gravitons in S-Matrix Theory: Derivation of Charge Conservation and Equality of Gravitational and Inertial Mass, Phys. Rev.135 (1964) B1049 [INSPIRE].

  22. [22]

    S. Weinberg, Infrared photons and gravitons, Phys. Rev.140 (1965) B516 [INSPIRE].

  23. [23]

    F. Cachazo and A. Strominger, Evidence for a New Soft Graviton Theorem, arXiv:1404.4091 [INSPIRE].

  24. [24]

    B. Sahoo and A. Sen, Classical and Quantum Results on Logarithmic Terms in the Soft Theorem in Four Dimensions, JHEP02 (2019) 086 [arXiv:1808.03288] [INSPIRE].

  25. [25]

    M. Campiglia and A. Laddha, Loop Corrected Soft Photon Theorem as a Ward Identity, JHEP10 (2019) 287 [arXiv:1903.09133] [INSPIRE].

  26. [26]

    J. Penedones, E. Trevisani and M. Yamazaki, Recursion Relations for Conformal Blocks, JHEP09 (2016) 070 [arXiv:1509.00428] [INSPIRE].

  27. [27]

    J. Erdmenger and H. Osborn, Conformally covariant differential operators: Symmetric tensor fields, Class. Quant. Grav.15 (1998) 273 [gr-qc/9708040] [INSPIRE].

  28. [28]

    L. Dolan, C.R. Nappi and E. Witten, Conformal operators for partially massless states, JHEP10 (2001) 016 [hep-th/0109096] [INSPIRE].

  29. [29]

    M. Beccaria and A.A. Tseytlin, On higher spin partition functions, J. Phys.A 48 (2015) 275401 [arXiv:1503.08143] [INSPIRE].

  30. [30]

    G. Barnich and C. Troessaert, Aspects of the BMS/CFT correspondence, PoS(CNCFG2010)010 [Ann. U. Craiova Phys.21 (2011) S11] [arXiv:1102.4632] [INSPIRE].

  31. [31]

    A. Giveon, D. Kutasov and N. Seiberg, Comments on string theory on AdS3 , Adv. Theor. Math. Phys.2 (1998) 733 [hep-th/9806194] [INSPIRE].

  32. [32]

    D. Kutasov and N. Seiberg, More comments on string theory on AdS3 , JHEP04 (1999) 008 [hep-th/9903219] [INSPIRE].

  33. [33]

    Y. Geyer, A.E. Lipstein and L. Mason, Ambitwistor strings at null infinity and (subleading) soft limits, Class. Quant. Grav.32 (2015) 055003 [arXiv:1406.1462] [INSPIRE].

  34. [34]

    A.E. Lipstein, Soft Theorems from Conformal Field Theory, JHEP06 (2015) 166 [arXiv:1504.01364] [INSPIRE].

  35. [35]

    D. Kapec and P. Mitra, A d-Dimensional Stress Tensor for Minkd+2Gravity, JHEP05 (2018) 186 [arXiv:1711.04371] [INSPIRE].

  36. [36]

    S. Pasterski, S.-H. Shao and A. Strominger, Flat Space Amplitudes and Conformal Symmetry of the Celestial Sphere, Phys. Rev.D 96 (2017) 065026 [arXiv:1701.00049] [INSPIRE].

  37. [37]

    S. Pasterski and S.-H. Shao, Conformal basis for flat space amplitudes, Phys. Rev.D 96 (2017) 065022 [arXiv:1705.01027] [INSPIRE].

  38. [38]

    S. Pasterski, S.-H. Shao and A. Strominger, Gluon Amplitudes as 2d Conformal Correlators, Phys. Rev.D 96 (2017) 085006 [arXiv:1706.03917] [INSPIRE].

  39. [39]

    C. Cheung, A. de la Fuente and R. Sundrum, 4D scattering amplitudes and asymptotic symmetries from 2D CFT, JHEP01 (2017) 112 [arXiv:1609.00732] [INSPIRE].

  40. [40]

    J. de Boer and S.N. Solodukhin, A holographic reduction of Minkowski space-time, Nucl. Phys.B 665 (2003) 545 [hep-th/0303006] [INSPIRE].

  41. [41]

    S. Banerjee, Null Infinity and Unitary Representation of The Poincaŕe Group, JHEP01 (2019) 205 [arXiv:1801.10171] [INSPIRE].

  42. [42]

    S. Banerjee, Symmetries of free massless particles and soft theorems, Gen. Rel. Grav.51 (2019) 128 [arXiv:1804.06646] [INSPIRE].

  43. [43]

    C. Cardona and Y.-t. Huang, S-matrix singularities and CFT correlation functions, JHEP08 (2017) 133 [arXiv:1702.03283] [INSPIRE].

  44. [44]

    H.T. Lam and S.-H. Shao, Conformal Basis, Optical Theorem and the Bulk Point Singularity, Phys. Rev.D 98 (2018) 025020 [arXiv:1711.06138] [INSPIRE].

  45. [45]

    N. Banerjee, S. Banerjee, S. Atul Bhatkar and S. Jain, Conformal Structure of Massless Scalar Amplitudes Beyond Tree level, JHEP04 (2018) 039 [arXiv:1711.06690] [INSPIRE].

  46. [46]

    A. Schreiber, A. Volovich and M. Zlotnikov, Tree-level gluon amplitudes on the celestial sphere, Phys. Lett.B 781 (2018) 349 [arXiv:1711.08435] [INSPIRE].

  47. [47]

    L. Donnay, A. Puhm and A. Strominger, Conformally Soft Photons and Gravitons, JHEP01 (2019) 184 [arXiv:1810.05219] [INSPIRE].

  48. [48]

    W. Fan, A. Fotopoulos and T.R. Taylor, Soft Limits of Yang-Mills Amplitudes and Conformal Correlators, JHEP05 (2019) 121 [arXiv:1903.01676] [INSPIRE].

  49. [49]

    M. Pate, A.-M. Raclariu and A. Strominger, Conformally Soft Theorem in Gauge Theory, Phys. Rev.D 100 (2019) 085017 [arXiv:1904.10831] [INSPIRE].

  50. [50]

    A. Ball, E. Himwich, S.A. Narayanan, S. Pasterski and A. Strominger, Uplifting AdS3/CFT2to flat space holography, JHEP08 (2019) 168 [arXiv:1905.09809] [INSPIRE].

  51. [51]

    T. Adamo, L. Mason and A. Sharma, Celestial amplitudes and conformal soft theorems, Class. Quant. Grav.36 (2019) 205018 [arXiv:1905.09224] [INSPIRE].

  52. [52]

    A. Puhm, Conformally Soft Theorem in Gravity, arXiv:1905.09799 [INSPIRE].

  53. [53]

    T. He and P. Mitra, Asymptotic symmetries and Weinberg’s soft photon theorem in Minkd+2, JHEP10 (2019) 213 [arXiv:1903.02608] [INSPIRE].

  54. [54]

    A. Bagchi, R. Basu, A. Kakkar and A. Mehra, Flat Holography: Aspects of the dual field theory, JHEP12 (2016) 147 [arXiv:1609.06203] [INSPIRE].

  55. [55]

    Hugh Osborn, Lectures on conformal field theories in more than two dimensions, http://www.damtp.cam.ac.uk/user/ho/CFTNotes.pdf.

  56. [56]

    K. Peeters, Introducing Cadabra: A symbolic computer algebra system for field theory problems, hep-th/0701238 [INSPIRE].

  57. [57]

    K. Peeters, A Field-theory motivated approach to symbolic computer algebra, Comput. Phys. Commun.176 (2007) 550 [cs/0608005] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Correspondence to Shamik Banerjee.

Additional information

ArXiv ePrint: 1906.01650

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Banerjee, S., Pandey, P. Conformal properties of soft-operators. Part II. Use of null-states. J. High Energ. Phys. 2020, 67 (2020). https://doi.org/10.1007/JHEP02(2020)067

Download citation

Keywords

  • Scattering Amplitudes
  • Space-Time Symmetries