Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Numerical solution for tachyon vacuum in the Schnabl gauge

  • 10 Accesses

Abstract

Based on the level truncation scheme, we develop a new numerical method to evaluate the tachyon vacuum solution in the Schnabl gauge up to level L = 24. We confirm the prediction that the energy associated to this numerical solution has a local minimum at level L = 12. Extrapolating the energy data of L ≤ 24 to infinite level, we observe that the energy goes towards the analytical value 1, nevertheless the precision of the extrapolation is lower than in the Siegel gauge. Furthermore, we analyze the Ellwood invariant and show that its value converges monotonically towards the expected analytical result. We also study the tachyon vacuum expectation value (vev) and some other coefficients of the solution. Finally, some consistency checks of the solution are performed, and we briefly discuss the search for other Schnabl gauge numerical solutions.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    E. Witten, Noncommutative Geometry and String Field Theory, Nucl. Phys.B 268 (1986) 253 [INSPIRE].

  2. [2]

    M. Schnabl, Analytic solution for tachyon condensation in open string field theory, Adv. Theor. Math. Phys.10 (2006) 433 [hep-th/0511286] [INSPIRE].

  3. [3]

    A. Sen, Descent relations among bosonic D-branes, Int. J. Mod. Phys.A 14 (1999) 4061 [hep-th/9902105] [INSPIRE].

  4. [4]

    A. Sen, Universality of the tachyon potential, JHEP12 (1999) 027 [hep-th/9911116] [INSPIRE].

  5. [5]

    Y. Okawa, Comments on Schnabl’s analytic solution for tachyon condensation in Witten’s open string field theory, JHEP04 (2006) 055 [hep-th/0603159] [INSPIRE].

  6. [6]

    Y. Okawa, Analytic methods in open string field theory, Prog. Theor. Phys.128 (2012) 1001 [INSPIRE].

  7. [7]

    E. Fuchs and M. Kroyter, Schnabl’s L0operator in the continuous basis, JHEP10 (2006) 067 [hep-th/0605254] [INSPIRE].

  8. [8]

    E.A. Arroyo, Conservation laws and tachyon potentials in the sliver frame, JHEP06 (2011) 033 [arXiv:1103.4830] [INSPIRE].

  9. [9]

    L. Rastelli and B. Zwiebach, Solving Open String Field Theory with Special Projectors, JHEP01 (2008) 020 [hep-th/0606131] [INSPIRE].

  10. [10]

    I. Ellwood and M. Schnabl, Proof of vanishing cohomology at the tachyon vacuum, JHEP02 (2007) 096 [hep-th/0606142] [INSPIRE].

  11. [11]

    Y. Okawa, L. Rastelli and B. Zwiebach, Analytic Solutions for Tachyon Condensation with General Projectors, hep-th/0611110 [INSPIRE].

  12. [12]

    T. Erler, Split String Formalism and the Closed String Vacuum, JHEP05 (2007) 083 [hep-th/0611200] [INSPIRE].

  13. [13]

    T. Erler, Split String Formalism and the Closed String Vacuum, II, JHEP05 (2007) 084 [hep-th/0612050] [INSPIRE].

  14. [14]

    M. Schnabl, Algebraic Solutions in Open String Field Theory — a Lightning Review, arXiv:1004.4858 [INSPIRE].

  15. [15]

    E. Fuchs and M. Kroyter, Analytical Solutions of Open String Field Theory, Phys. Rept.502 (2011) 89 [arXiv:0807.4722] [INSPIRE].

  16. [16]

    M. Kiermaier, A. Sen and B. Zwiebach, Linear b-Gauges for Open String Fields, JHEP03 (2008) 050 [arXiv:0712.0627] [INSPIRE].

  17. [17]

    T. Takahashi, Level truncation analysis of exact solutions in open string field theory, JHEP01 (2008) 001 [arXiv:0710.5358] [INSPIRE].

  18. [18]

    I. Kishimoto, On numerical solutions in open string field theory, Prog. Theor. Phys. Suppl.188 (2011) 155 [INSPIRE].

  19. [19]

    E.A. Arroyo, Cubic interaction term for Schnabl’s solution using Pade approximants, J. Phys.A 42 (2009) 375402 [arXiv:0905.2014] [INSPIRE].

  20. [20]

    E. Aldo Arroyo, Level truncation analysis of regularized identity based solutions, JHEP11 (2011) 079 [arXiv:1109.5354] [INSPIRE].

  21. [21]

    E.A. Arroyo, Comments on regularization of identity based solutions in string field theory, JHEP11 (2010) 135 [arXiv:1009.0198] [INSPIRE].

  22. [22]

    T. Takahashi and S. Tanimoto, Marginal and scalar solutions in cubic open string field theory, JHEP03 (2002) 033 [hep-th/0202133] [INSPIRE].

  23. [23]

    T. Erler and M. Schnabl, A Simple Analytic Solution for Tachyon Condensation, JHEP10 (2009) 066 [arXiv:0906.0979] [INSPIRE].

  24. [24]

    M. Murata and M. Schnabl, Multibrane Solutions in Open String Field Theory, JHEP07 (2012) 063 [arXiv:1112.0591] [INSPIRE].

  25. [25]

    T. Masuda, Comments on new multiple-brane solutions based on Hata-Kojita duality in open string field theory, JHEP05 (2014) 021 [arXiv:1211.2649] [INSPIRE].

  26. [26]

    H. Hata and T. Kojita, Singularities in K-space and Multi-brane Solutions in Cubic String Field Theory, JHEP02 (2013) 065 [arXiv:1209.4406] [INSPIRE].

  27. [27]

    T. Masuda, T. Noumi and D. Takahashi, Constraints on a class of classical solutions in open string field theory, JHEP10 (2012) 113 [arXiv:1207.6220] [INSPIRE].

  28. [28]

    L. Bonora, S. Giaccari and D.D. Tolla, Analytic solutions for Dp-branes in SFT, JHEP12 (2011) 033 [arXiv:1106.3914] [INSPIRE].

  29. [29]

    L. Bonora, S. Giaccari and D.D. Tolla, The energy of the analytic lump solution in SFT, JHEP08 (2011) 158 [Erratum ibid.04 (2012) 001] [arXiv:1105.5926] [INSPIRE].

  30. [30]

    M. Kiermaier, Y. Okawa, L. Rastelli and B. Zwiebach, Analytic solutions for marginal deformations in open string field theory, JHEP01 (2008) 028 [hep-th/0701249] [INSPIRE].

  31. [31]

    N. Mertes and M. Schnabl, String field representation of the Virasoro algebra, JHEP12 (2016) 151 [arXiv:1610.00968] [INSPIRE].

  32. [32]

    M. Jokel, Real Tachyon Vacuum Solution without Square Roots, arXiv:1704.02391 [INSPIRE].

  33. [33]

    E.A. Arroyo, Comments on real tachyon vacuum solution without square roots, JHEP01 (2018) 006 [arXiv:1706.00336] [INSPIRE].

  34. [34]

    N. Moeller and W. Taylor, Level truncation and the tachyon in open bosonic string field theory, Nucl. Phys.B 583 (2000) 105 [hep-th/0002237] [INSPIRE].

  35. [35]

    D. Gaiotto and L. Rastelli, Experimental string field theory, JHEP08 (2003) 048 [hep-th/0211012] [INSPIRE].

  36. [36]

    E.A. Arroyo, A. Fernandes-Silva and R. Szitas, Numerical solution of open string field theory in Schnabl gauge, JHEP01 (2018) 007 [arXiv:1707.09452] [INSPIRE].

  37. [37]

    M. Kudrna and M. Schnabl, Universal Solutions in Open String Field Theory, arXiv:1812.03221 [INSPIRE].

  38. [38]

    M. Kudrna, Level Truncation Approach to Open String Field Theory, Ph.D. Thesis (2019) https://dspace.cuni.cz/bitstream/handle/20.500.11956/110558/140080054.pdf.

  39. [39]

    I. Kishimoto and T. Takahashi, Numerical Evaluation of Gauge Invariants for a-gauge Solutions in Open String Field Theory, Prog. Theor. Phys.121 (2009) 695 [arXiv:0902.0445] [INSPIRE].

  40. [40]

    I. Kishimoto and T. Takahashi, Numerical Evaluation of Gauge Invariants for a-gauge Solutions in Open String Field Theory, Theor. Math. Phys.163 (2010) 710 [arXiv:0910.3025] [INSPIRE].

  41. [41]

    A. Sen and B. Zwiebach, Tachyon condensation in string field theory, JHEP03 (2000) 002 [hep-th/9912249] [INSPIRE].

  42. [42]

    M. Kudrna and C. Maccaferri, BCFT moduli space in level truncation, JHEP04 (2016) 057 [arXiv:1601.04046] [INSPIRE].

  43. [43]

    A. Hashimoto and N. Itzhaki, Observables of string field theory, JHEP01 (2002) 028 [hep-th/0111092] [INSPIRE].

  44. [44]

    I. Ellwood, The Closed string tadpole in open string field theory, JHEP08 (2008) 063 [arXiv:0804.1131] [INSPIRE].

  45. [45]

    M. Kudrna, C. Maccaferri and M. Schnabl, Boundary State from Ellwood Invariants, JHEP07 (2013) 033 [arXiv:1207.4785] [INSPIRE].

  46. [46]

    The Principles of Polynomial Homotopy Continuation Methods, http://homepages.math.uic.edu/∼jan/srvart/node4.html.

  47. [47]

    E.L. Allgower and K. Georg, Introduction Numerical Continuation Methods, Springer-Verlag Berlin Heidelberg (1990).

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Correspondence to E. Aldo Arroyo.

Additional information

ArXiv ePrint: 1908.05330

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aldo Arroyo, E., Kudrna, M. Numerical solution for tachyon vacuum in the Schnabl gauge. J. High Energ. Phys. 2020, 65 (2020). https://doi.org/10.1007/JHEP02(2020)065

Download citation

Keywords

  • String Field Theory
  • Tachyon Condensation