Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Mass production of IIA and IIB dS vacua

  • 8 Accesses


We describe several applications of the mass production procedure proposed in [1] to stabilize multiple moduli in a dS vacuum, in supergravity models inspired by string theory. The construction involves a small downshift of an initial supersymmetric Minkowski minimum to a supersymmetric AdS minimum, and a consequent small uplift to a dS minimum. Our type IIA examples include dS stabilization in a 7-moduli model with [SL(2, ℝ)]7 tree level symmetry, and its simplified version, a 3-moduli STU model. In these models, we use uplifting anti-D6 branes. In type IIB models, we present 2- and 3-moduli examples of stable dS vacua in CY three-folds, with an uplifting anti-D3 brane. These include K3 fibration models, a CICY model and a multi-hole Swiss cheese model. We also address the issue whether this procedure is limited to a very small parameter range or if large deviations from the progenitor Minkowski vacuum are possible.

A preprint version of the article is available at ArXiv.


  1. [1]

    R. Kallosh and A. Linde, Mass Production of Type IIA dS Vacua, arXiv:1910.08217 [INSPIRE].

  2. [2]

    S. Ferrara, R. Kallosh and A. Linde, Cosmology with Nilpotent Superfields, JHEP10 (2014) 143 [arXiv:1408.4096] [INSPIRE].

  3. [3]

    R. Kallosh and T. Wrase, Emergence of Spontaneously Broken Supersymmetry on an Anti-D3-Brane in KKLT dS Vacua, JHEP12 (2014) 117 [arXiv:1411.1121] [INSPIRE].

  4. [4]

    R. Kallosh and T. Wrase, dS Supergravity from 10d, Fortsch. Phys.67 (2019) 1800071 [arXiv:1808.09427] [INSPIRE].

  5. [5]

    N. Cribiori, R. Kallosh, C. Roupec and T. Wrase, Uplifting Anti-D6-brane, JHEP12 (2019) 171 [arXiv:1909.08629] [INSPIRE].

  6. [6]

    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev.D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].

  7. [7]

    R. Kallosh and A.D. Linde, Landscape, the scale of SUSY breaking and inflation, JHEP12 (2004) 004 [hep-th/0411011] [INSPIRE].

  8. [8]

    J.J. Blanco-Pillado, R. Kallosh and A.D. Linde, Supersymmetry and stability of flux vacua, JHEP05 (2006) 053 [hep-th/0511042] [INSPIRE].

  9. [9]

    R. Kallosh, A. Linde, K.A. Olive and T. Rube, Chaotic inflation and supersymmetry breaking, Phys. Rev.D 84 (2011) 083519 [arXiv:1106.6025] [INSPIRE].

  10. [10]

    N.V. Krasnikov, On Supersymmetry Breaking in Superstring Theories, Phys. Lett.B 193 (1987) 37 [INSPIRE].

  11. [11]

    T.R. Taylor, Dilaton, gaugino condensation and supersymmetry breaking, Phys. Lett.B 252 (1990) 59 [INSPIRE].

  12. [12]

    J.A. Casas, Z. Lalak, C. Muñoz and G.G. Ross, Hierarchical Supersymmetry Breaking and Dynamical Determination of Compactification Parameters by Nonperturbative Effects, Nucl. Phys.B 347 (1990) 243 [INSPIRE].

  13. [13]

    B. de Carlos, J.A. Casas and C. Muñoz, Supersymmetry breaking and determination of the unification gauge coupling constant in string theories, Nucl. Phys.B 399 (1993) 623 [ ].

  14. [14]

    V. Kaplunovsky and J. Louis, Phenomenological aspects of F-theory, Phys. Lett.B 417 (1998) 45 [hep-th/9708049] [INSPIRE].

  15. [15]

    E. Palti, The Swampland: Introduction and Review, Fortsch. Phys.67 (2019) 1900037 [arXiv:1903.06239] [INSPIRE].

  16. [16]

    J.P. Conlon, R. Kallosh, A.D. Linde and F. Quevedo, Volume Modulus Inflation and the Gravitino Mass Problem, JCAP09 (2008) 011 [arXiv:0806.0809] [INSPIRE].

  17. [17]

    M. Roček, Linearizing the Volkov-Akulov Model, Phys. Rev. Lett.41 (1978) 451 [INSPIRE].

  18. [18]

    F. Denef and M.R. Douglas, Distributions of flux vacua, JHEP05 (2004) 072 [hep-th/0404116] [INSPIRE].

  19. [19]

    R. Kallosh, L. Kofman, A.D. Linde and A. Van Proeyen, Superconformal symmetry, supergravity and cosmology, Class. Quant. Grav.17 (2000) 4269 [Erratum ibid.21 (2004) 5017] [hep-th/0006179] [INSPIRE].

  20. [20]

    D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press, Cambridge U.K. (2012).

  21. [21]

    S. Ferrara and R. Kallosh, Seven-disk manifold, α-attractors and B modes, Phys. Rev.D 94 (2016) 126015 [arXiv:1610.04163] [INSPIRE].

  22. [22]

    R. Kallosh, A. Linde, T. Wrase and Y. Yamada, Maximal Supersymmetry and B-Mode Targets, JHEP04 (2017) 144 [arXiv:1704.04829] [INSPIRE].

  23. [23]

    J.-P. Derendinger, C. Kounnas, P.M. Petropoulos and F. Zwirner, Superpotentials in IIA compactifications with general fluxes, Nucl. Phys.B 715 (2005) 211 [hep-th/0411276] [INSPIRE].

  24. [24]

    G. Villadoro and F. Zwirner, N = 1 effective potential from dual type-IIA D6/O6 orientifolds with general fluxes, JHEP06 (2005) 047 [hep-th/0503169] [INSPIRE].

  25. [25]

    J. Blåbäck, U. Danielsson and G. Dibitetto, A new light on the darkest corner of the landscape, arXiv:1810.11365 [INSPIRE].

  26. [26]

    E. Palti, G. Tasinato and J. Ward, WEAKLY-coupled IIA Flux Compactifications, JHEP06 (2008) 084 [arXiv:0804.1248] [INSPIRE].

  27. [27]

    S. Kachru, S.H. Katz, A.E. Lawrence and J. McGreevy, Open string instantons and superpotentials, Phys. Rev.D 62 (2000) 026001 [hep-th/9912151] [INSPIRE].

  28. [28]

    R. Blumenhagen, M. Cvetic, S. Kachru and T. Weigand, D-Brane Instantons in Type II Orientifolds, Ann. Rev. Nucl. Part. Sci.59 (2009) 269 [arXiv:0902.3251].

  29. [29]

    M. Cicoli, J.P. Conlon and F. Quevedo, General Analysis of LARGE Volume Scenarios with String Loop Moduli Stabilisation, JHEP10 (2008) 105 [arXiv:0805.1029] [INSPIRE].

  30. [30]

    M. Cicoli, C.P. Burgess and F. Quevedo, Fibre Inflation: Observable Gravity Waves from IIB String Compactifications, JCAP03 (2009) 013 [arXiv:0808.0691] [INSPIRE].

  31. [31]

    C.P. Burgess, M. Cicoli, S. de Alwis and F. Quevedo, Robust Inflation from Fibrous Strings, JCAP05 (2016) 032 [arXiv:1603.06789] [INSPIRE].

  32. [32]

    R. Kallosh, A. Linde, D. Roest, A. Westphal and Y. Yamada, Fibre Inflation and α-attractors, JHEP02 (2018) 117 [arXiv:1707.05830] [INSPIRE].

  33. [33]

    K. Bobkov, V. Braun, P. Kumar and S. Raby, Stabilizing All Kähler Moduli in Type IIB Orientifolds, JHEP12 (2010) 056 [arXiv:1003.1982] [INSPIRE].

  34. [34]

    T.W. Grimm and J. Louis, The Effective action of N = 1 Calabi-Yau orientifolds, Nucl. Phys.B 699 (2004) 387 [hep-th/0403067] [INSPIRE].

  35. [35]

    S. Kachru, R. Kallosh, A.D. Linde, J.M. Maldacena, L.P. McAllister and S.P. Trivedi, Towards inflation in string theory, JCAP10 (2003) 013 [hep-th/0308055] [INSPIRE].

  36. [36]

    V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP03 (2005) 007 [hep-th/0502058] [INSPIRE].

  37. [37]

    F. Denef, M.R. Douglas and B. Florea, Building a better racetrack, JHEP06 (2004) 034 [hep-th/0404257] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Correspondence to Christoph Roupec.

Additional information

ArXiv ePrint: 1912.00027

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cribiori, N., Kallosh, R., Linde, A. et al. Mass production of IIA and IIB dS vacua. J. High Energ. Phys. 2020, 63 (2020). https://doi.org/10.1007/JHEP02(2020)063

Download citation


  • D-branes
  • Flux compactifications
  • Supergravity Models
  • Superstring Vacua