Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

NNLO QCD corrections to three-photon production at the LHC

  • 9 Accesses

Abstract

We compute the NNLO QCD corrections to three-photon production at the LHC. This is the first NNLO QCD calculation for a 2 3 process. Our calculation is exact, except for the scale-independent part of the two-loop finite remainder which is included in the leading color approximation. We estimate the size of the missing two-loop corrections and find them to be phenomenologically negligible. We compare our predictions with available 8 TeV measurement from the ATLAS collaboration. We find that the inclusion of the NNLO corrections eliminates the existing significant discrepancy with respect to NLO QCD predictions, paving the way for precision phenomenology in this process.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    R. Hamberg, W.L. van Neerven and T. Matsuura, A complete calculation of the order \( {\alpha}_s^2 \)correction to the Drell-Yan K factor, Nucl. Phys.B 359 (1991) 343 [Erratum ibid.B 644 (2002) 403] [INSPIRE].

  2. [2]

    T. Binoth and G. Heinrich, An automatized algorithm to compute infrared divergent multiloop integrals, Nucl. Phys.B 585 (2000) 741 [hep-ph/0004013] [INSPIRE].

  3. [3]

    R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett.88 (2002) 201801 [hep-ph/0201206] [INSPIRE].

  4. [4]

    C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys.B 646 (2002) 220 [hep-ph/0207004] [INSPIRE].

  5. [5]

    C. Anastasiou, K. Melnikov and F. Petriello, A new method for real radiation at NNLO, Phys. Rev.D 69 (2004) 076010 [hep-ph/0311311] [INSPIRE].

  6. [6]

    C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, High precision QCD at hadron colliders: Electroweak gauge boson rapidity distributions at NNLO, Phys. Rev.D 69 (2004) 094008 [hep-ph/0312266] [INSPIRE].

  7. [7]

    G. Somogyi, Z. Trócsányi and V. Del Duca, Matching of singly- and doubly-unresolved limits of tree-level QCD squared matrix elements, JHEP06 (2005) 024 [hep-ph/0502226] [INSPIRE].

  8. [8]

    A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Antenna subtraction at NNLO, JHEP09 (2005) 056 [hep-ph/0505111] [INSPIRE].

  9. [9]

    A. Daleo, T. Gehrmann and D. Maître, Antenna subtraction with hadronic initial states, JHEP04 (2007) 016 [hep-ph/0612257] [INSPIRE].

  10. [10]

    S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett.98 (2007) 222002 [hep-ph/0703012] [INSPIRE].

  11. [11]

    M. Czakon, A novel subtraction scheme for double-real radiation at NNLO, Phys. Lett.B 693 (2010) 259 [arXiv:1005.0274] [INSPIRE].

  12. [12]

    M. Czakon, Double-real radiation in hadronic top quark pair production as a proof of a certain concept, Nucl. Phys.B 849 (2011) 250 [arXiv:1101.0642] [INSPIRE].

  13. [13]

    M. Czakon and D. Heymes, Four-dimensional formulation of the sector-improved residue subtraction scheme, Nucl. Phys.B 890 (2014) 152 [arXiv:1408.2500] [INSPIRE].

  14. [14]

    G. Abelof and A. Gehrmann-De Ridder, Antenna subtraction for the production of heavy particles at hadron colliders, JHEP04 (2011) 063 [arXiv:1102.2443] [INSPIRE].

  15. [15]

    J. Currie, E.W.N. Glover and S. Wells, Infrared Structure at NNLO Using Antenna Subtraction, JHEP04 (2013) 066 [arXiv:1301.4693] [INSPIRE].

  16. [16]

    R. Boughezal, F. Caola, K. Melnikov, F. Petriello and M. Schulze, Higgs boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, JHEP06 (2013) 072 [arXiv:1302.6216] [INSPIRE].

  17. [17]

    J. Currie, A. Gehrmann-De Ridder, E.W.N. Glover and J. Pires, NNLO QCD corrections to jet production at hadron colliders from gluon scattering, JHEP01 (2014) 110 [arXiv:1310.3993] [INSPIRE].

  18. [18]

    R. Boughezal, C. Focke, X. Liu and F. Petriello, W -boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, Phys. Rev. Lett.115 (2015) 062002 [arXiv:1504.02131] [INSPIRE].

  19. [19]

    J. Gaunt, M. Stahlhofen, F.J. Tackmann and J.R. Walsh, N-jettiness Subtractions for NNLO QCD Calculations, JHEP09 (2015) 058 [arXiv:1505.04794] [INSPIRE].

  20. [20]

    M. Cacciari, F.A. Dreyer, A. Karlberg, G.P. Salam and G. Zanderighi, Fully Differential Vector-Boson-Fusion Higgs Production at Next-to-Next-to-Leading Order, Phys. Rev. Lett.115 (2015) 082002 [Erratum ibid.120 (2018) 139901] [arXiv:1506.02660] [INSPIRE].

  21. [21]

    R. Bonciani, S. Catani, M. Grazzini, H. Sargsyan and A. Torre, The qT subtraction method for top quark production at hadron colliders, Eur. Phys. J.C 75 (2015) 581 [arXiv:1508.03585] [INSPIRE].

  22. [22]

    R. Boughezal et al., Color singlet production at NNLO in MCFM, Eur. Phys. J.C 77 (2017) 7 [arXiv:1605.08011] [INSPIRE].

  23. [23]

    F. Caola, K. Melnikov and R. Röntsch, Nested soft-collinear subtractions in NNLO QCD computations, Eur. Phys. J.C 77 (2017) 248 [arXiv:1702.01352] [INSPIRE].

  24. [24]

    J. Currie, A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, A. Huss and J. Pires, Precise predictions for dijet production at the LHC, Phys. Rev. Lett.119 (2017) 152001 [arXiv:1705.10271] [INSPIRE].

  25. [25]

    M. Grazzini, S. Kallweit and M. Wiesemann, Fully differential NNLO computations with MATRIX, Eur. Phys. J.C 78 (2018) 537 [arXiv:1711.06631] [INSPIRE].

  26. [26]

    F. Herzog, Geometric IR subtraction for final state real radiation, JHEP08 (2018) 006 [arXiv:1804.07949] [INSPIRE].

  27. [27]

    L. Magnea, E. Maina, G. Pelliccioli, C. Signorile-Signorile, P. Torrielli and S. Uccirati, Local analytic sector subtraction at NNLO, JHEP12 (2018) 107 [Erratum ibid.06 (2019) 013] [arXiv:1806.09570] [INSPIRE].

  28. [28]

    L. Magnea, E. Maina, G. Pelliccioli, C. Signorile-Signorile, P. Torrielli and S. Uccirati, Factorisation and Subtraction beyond NLO, JHEP12 (2018) 062 [arXiv:1809.05444] [INSPIRE].

  29. [29]

    F. Caola, K. Melnikov and R. Röntsch, Analytic results for color-singlet production at NNLO QCD with the nested soft-collinear subtraction scheme, Eur. Phys. J.C 79 (2019) 386 [arXiv:1902.02081] [INSPIRE].

  30. [30]

    S. Catani, S. Devoto, M. Grazzini, S. Kallweit and J. Mazzitelli, Top-quark pair production at the LHC: Fully differential QCD predictions at NNLO, JHEP07 (2019) 100 [arXiv:1906.06535] [INSPIRE].

  31. [31]

    F. Caola, K. Melnikov and R. Röntsch, Analytic results for decays of color singlets to gg and qq̄ final states at NNLO QCD with the nested soft-collinear subtraction scheme, Eur. Phys. J.C 79 (2019) 1013 [arXiv:1907.05398] [INSPIRE].

  32. [32]

    C.G. Papadopoulos, D. Tommasini and C. Wever, The Pentabox Master Integrals with the Simplified Differential Equations approach, JHEP04 (2016) 078 [arXiv:1511.09404] [INSPIRE].

  33. [33]

    M. Zeng, Differential equations on unitarity cut surfaces, JHEP06 (2017) 121 [arXiv:1702.02355] [INSPIRE].

  34. [34]

    D. Chicherin, J. Henn and V. Mitev, Bootstrapping pentagon functions, JHEP05 (2018) 164 [arXiv:1712.09610] [INSPIRE].

  35. [35]

    R.H. Boels, Q. Jin and H. Lüo, Efficient integrand reduction for particles with spin, arXiv:1802.06761 [INSPIRE].

  36. [36]

    D. Chicherin, J.M. Henn and E. Sokatchev, Scattering Amplitudes from Superconformal Ward Identities, Phys. Rev. Lett.121 (2018) 021602 [arXiv:1804.03571] [INSPIRE].

  37. [37]

    J. Böhm, A. Georgoudis, K.J. Larsen, H. Schönemann and Y. Zhang, Complete integration-by-parts reductions of the non-planar hexagon-box via module intersections, JHEP09 (2018) 024 [arXiv:1805.01873] [INSPIRE].

  38. [38]

    H.A. Chawdhry, M.A. Lim and A. Mitov, Two-loop five-point massless QCD amplitudes within the integration-by-parts approach, Phys. Rev.D 99 (2019) 076011 [arXiv:1805.09182] [INSPIRE].

  39. [39]

    T. Gehrmann, J.M. Henn and N.A. Lo Presti, Pentagon functions for massless planar scattering amplitudes, JHEP10 (2018) 103 [arXiv:1807.09812] [INSPIRE].

  40. [40]

    S. Abreu, B. Page and M. Zeng, Differential equations from unitarity cuts: nonplanar hexa-box integrals, JHEP01 (2019) 006 [arXiv:1807.11522] [INSPIRE].

  41. [41]

    D. Chicherin, T. Gehrmann, J.M. Henn, N.A. Lo Presti, V. Mitev and P. Wasser, Analytic result for the nonplanar hexa-box integrals, JHEP03 (2019) 042 [arXiv:1809.06240] [INSPIRE].

  42. [42]

    A. Kardos, A new reduction strategy for special negative sectors of planar two-loop integrals without Laporta algorithm, arXiv:1812.05622 [INSPIRE].

  43. [43]

    D. Chicherin, T. Gehrmann, J.M. Henn, P. Wasser, Y. Zhang and S. Zoia, All Master Integrals for Three-Jet Production at Next-to-Next-to-Leading Order, Phys. Rev. Lett.123 (2019) 041603 [arXiv:1812.11160] [INSPIRE].

  44. [44]

    D. Bendle et al., Integration-by-parts reductions of Feynman integrals using Singular and GPI-Space, arXiv:1908.04301 [INSPIRE].

  45. [45]

    C.G. Papadopoulos and C. Wever, Internal Reduction method for computing Feynman Integrals, arXiv:1910.06275 [INSPIRE].

  46. [46]

    S. Badger, H. Frellesvig and Y. Zhang, A Two-Loop Five-Gluon Helicity Amplitude in QCD, JHEP12 (2013) 045 [arXiv:1310.1051] [INSPIRE].

  47. [47]

    T. Gehrmann, J.M. Henn and N.A. Lo Presti, Analytic form of the two-loop planar five-gluon all-plus-helicity amplitude in QCD, Phys. Rev. Lett.116 (2016) 062001 [Erratum ibid.116 (2016) 189903] [arXiv:1511.05409] [INSPIRE].

  48. [48]

    S. Badger, C. Brønnum-Hansen, H.B. Hartanto and T. Peraro, First look at two-loop five-gluon scattering in QCD, Phys. Rev. Lett.120 (2018) 092001 [arXiv:1712.02229] [INSPIRE].

  49. [49]

    S. Abreu, F. Febres Cordero, H. Ita, B. Page and M. Zeng, Planar Two-Loop Five-Gluon Amplitudes from Numerical Unitarity, Phys. Rev.D 97 (2018) 116014 [arXiv:1712.03946] [INSPIRE].

  50. [50]

    S. Badger et al., Applications of integrand reduction to two-loop five-point scattering amplitudes in QCD, PoS(LL2018)006 (2018) [arXiv:1807.09709] [INSPIRE].

  51. [51]

    S. Abreu, F. Febres Cordero, H. Ita, B. Page and V. Sotnikov, Planar Two-Loop Five-Parton Amplitudes from Numerical Unitarity, JHEP11 (2018) 116 [arXiv:1809.09067] [INSPIRE].

  52. [52]

    S. Badger, C. Brønnum-Hansen, H.B. Hartanto and T. Peraro, Analytic helicity amplitudes for two-loop five-gluon scattering: the single-minus case, JHEP01 (2019) 186 [arXiv:1811.11699] [INSPIRE].

  53. [53]

    S. Abreu, J. Dormans, F. Febres Cordero, H. Ita and B. Page, Analytic Form of Planar Two-Loop Five-Gluon Scattering Amplitudes in QCD, Phys. Rev. Lett.122 (2019) 082002 [arXiv:1812.04586] [INSPIRE].

  54. [54]

    S. Abreu, J. Dormans, F. Febres Cordero, H. Ita, B. Page and V. Sotnikov, Analytic Form of the Planar Two-Loop Five-Parton Scattering Amplitudes in QCD, JHEP05 (2019) 084 [arXiv:1904.00945] [INSPIRE].

  55. [55]

    S. Badger et al., Analytic form of the full two-loop five-gluon all-plus helicity amplitude, Phys. Rev. Lett.123 (2019) 071601 [arXiv:1905.03733] [INSPIRE].

  56. [56]

    H.B. Hartanto, S. Badger, C. Brønnum-Hansen and T. Peraro, A numerical evaluation of planar two-loop helicity amplitudes for a W-boson plus four partons, JHEP09 (2019) 119 [arXiv:1906.11862] [INSPIRE].

  57. [57]

    S. Badger, G. Mogull, A. Ochirov and D. O’Connell, A Complete Two-Loop, Five-Gluon Helicity Amplitude in Yang-Mills Theory, JHEP10 (2015) 064 [arXiv:1507.08797] [INSPIRE].

  58. [58]

    D.C. Dunbar and W.B. Perkins, Two-loop five-point all plus helicity Yang-Mills amplitude, Phys. Rev.D 93 (2016) 085029 [arXiv:1603.07514] [INSPIRE].

  59. [59]

    S. Badger, G. Mogull and T. Peraro, Local integrands for two-loop all-plus Yang-Mills amplitudes, JHEP08 (2016) 063 [arXiv:1606.02244] [INSPIRE].

  60. [60]

    Z. Bern, M. Czakon, D.A. Kosower, R. Roiban and V.A. Smirnov, Two-loop iteration of five-point N = 4 super-Yang-Mills amplitudes, Phys. Rev. Lett.97 (2006) 181601 [hep-th/0604074] [INSPIRE].

  61. [61]

    P. Mastrolia, E. Mirabella, G. Ossola and T. Peraro, Integrand-Reduction for Two-Loop Scattering Amplitudes through Multivariate Polynomial Division, Phys. Rev.D 87 (2013) 085026 [arXiv:1209.4319] [INSPIRE].

  62. [62]

    S. Abreu, L.J. Dixon, E. Herrmann, B. Page and M. Zeng, The two-loop five-point amplitude in \( \mathcal{N} \) = 4 super-Yang-Mills theory, Phys. Rev. Lett.122 (2019) 121603 [arXiv:1812.08941] [INSPIRE].

  63. [63]

    D. Chicherin, T. Gehrmann, J.M. Henn, P. Wasser, Y. Zhang and S. Zoia, Analytic result for a two-loop five-particle amplitude, Phys. Rev. Lett.122 (2019) 121602 [arXiv:1812.11057] [INSPIRE].

  64. [64]

    D.C. Dunbar, G.R. Jehu and W.B. Perkins, Two-Loop Gravity amplitudes from four dimensional Unitarity, Phys. Rev.D 95 (2017) 046012 [arXiv:1701.02934] [INSPIRE].

  65. [65]

    D. Chicherin, T. Gehrmann, J.M. Henn, P. Wasser, Y. Zhang and S. Zoia, The two-loop five-particle amplitude in \( \mathcal{N} \) = 8 supergravity, JHEP03 (2019) 115 [arXiv:1901.05932] [INSPIRE].

  66. [66]

    S. Abreu, L.J. Dixon, E. Herrmann, B. Page and M. Zeng, The two-loop five-point amplitude in \( \mathcal{N} \)= 8 supergravity, JHEP03 (2019) 123 [arXiv:1901.08563] [INSPIRE].

  67. [67]

    ATLAS collaboration, Measurement of the production cross section of three isolated photons in pp collisions at \( \sqrt{s} \) = 8 TeV using the ATLAS detector, Phys. Lett.B 781 (2018) 55 [arXiv:1712.07291] [INSPIRE].

  68. [68]

    ATLAS collaboration, Search for new phenomena in events with at least three photons collected in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, Eur. Phys. J.C 76 (2016) 210 [arXiv:1509.05051] [INSPIRE].

  69. [69]

    M. Czakon, P. Fiedler and A. Mitov, Resolving the Tevatron Top Quark Forward-Backward Asymmetry Puzzle: Fully Differential Next-to-Next-to-Leading-Order Calculation, Phys. Rev. Lett.115 (2015) 052001 [arXiv:1411.3007] [INSPIRE].

  70. [70]

    M. Czakon, D. Heymes and A. Mitov, High-precision differential predictions for top-quark pairs at the LHC, Phys. Rev. Lett.116 (2016) 082003 [arXiv:1511.00549] [INSPIRE].

  71. [71]

    M. Czakon, P. Fiedler, D. Heymes and A. Mitov, NNLO QCD predictions for fully-differential top-quark pair production at the Tevatron, JHEP05 (2016) 034 [arXiv:1601.05375] [INSPIRE].

  72. [72]

    M. Czakon, D. Heymes and A. Mitov, Dynamical scales for multi-TeV top-pair production at the LHC, JHEP04 (2017) 071 [arXiv:1606.03350] [INSPIRE].

  73. [73]

    A. Behring, M. Czakon, A. Mitov, A.S. Papanastasiou and R. Poncelet, Higher order corrections to spin correlations in top quark pair production at the LHC, Phys. Rev. Lett.123 (2019) 082001 [arXiv:1901.05407] [INSPIRE].

  74. [74]

    M. Czakon, A. van Hameren, A. Mitov and R. Poncelet, Single-jet inclusive rates with exact color at O \( \left({\alpha}_s^4\right) \), JHEP10 (2019) 262 [arXiv:1907.12911] [INSPIRE].

  75. [75]

    J.M. Campbell, R.K. Ellis, Y. Li and C. Williams, Predictions for diphoton production at the LHC through NNLO in QCD, JHEP07 (2016) 148 [arXiv:1603.02663] [INSPIRE].

  76. [76]

    https://bitbucket.org/hameren/avhlib.

  77. [77]

    M. Bury and A. van Hameren, Numerical evaluation of multi-gluon amplitudes for High Energy Factorization, Comput. Phys. Commun.196 (2015) 592 [arXiv:1503.08612] [INSPIRE].

  78. [78]

    F.V. Tkachov, A Theorem on Analytical Calculability of Four Loop Renormalization Group Functions, Phys. Lett.100B (1981) 65 [INSPIRE].

  79. [79]

    K.G. Chetyrkin and F.V. Tkachov, Integration by Parts: The Algorithm to Calculate β-functions in 4 Loops, Nucl. Phys.B 192 (1981) 159 [INSPIRE].

  80. [80]

    F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering Amplitudes with Open Loops, Phys. Rev. Lett.108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].

  81. [81]

    F. Buccioni et al., OpenLoops 2, Eur. Phys. J.C 79 (2019) 866 [arXiv:1907.13071] [INSPIRE].

  82. [82]

    S. Actis, A. Denner, L. Hofer, J.-N. Lang, A. Scharf and S. Uccirati, RECOLA: REcursive Computation of One-Loop Amplitudes, Comput. Phys. Commun.214 (2017) 140 [arXiv:1605.01090] [INSPIRE].

  83. [83]

    T. Peraro, FiniteFlow: multivariate functional reconstruction using finite fields and dataflow graphs, JHEP07 (2019) 031 [arXiv:1905.08019] [INSPIRE].

  84. [84]

    S. Borowka et al., pySecDec: a toolbox for the numerical evaluation of multi-scale integrals, Comput. Phys. Commun.222 (2018) 313 [arXiv:1703.09692] [INSPIRE].

  85. [85]

    https://www.ginac.de/CLN/.

  86. [86]

    G. Bevilacqua, M. Czakon, A. van Hameren, C.G. Papadopoulos and M. Worek, Complete off-shell effects in top quark pair hadroproduction with leptonic decay at next-to-leading order, JHEP02 (2011) 083 [arXiv:1012.4230] [INSPIRE].

  87. [87]

    G. Bevilacqua, H.B. Hartanto, M. Kraus and M. Worek, Top Quark Pair Production in Association with a Jet with Next-to-Leading-Order QCD Off-Shell Effects at the Large Hadron Collider, Phys. Rev. Lett.116 (2016) 052003 [arXiv:1509.09242] [INSPIRE].

  88. [88]

    G. Bevilacqua, H.B. Hartanto, M. Kraus and M. Worek, Off-shell Top Quarks with One Jet at the LHC: A comprehensive analysis at NLO QCD, JHEP11 (2016) 098 [arXiv:1609.01659] [INSPIRE].

  89. [89]

    S.P. Jones, M. Kerner and G. Luisoni, Next-to-Leading-Order QCD Corrections to Higgs Boson Plus Jet Production with Full Top-Quark Mass Dependence, Phys. Rev. Lett.120 (2018) 162001 [arXiv:1802.00349] [INSPIRE].

  90. [90]

    G. Bevilacqua, H.B. Hartanto, M. Kraus, T. Weber and M. Worek, Hard Photons in Hadroproduction of Top Quarks with Realistic Final States, JHEP10 (2018) 158 [arXiv:1803.09916] [INSPIRE].

  91. [91]

    Z. Kassabov, Zaharid/GPTree: Interpolation library using Gaussian Processes and KDTrees, https://doi.org/10.5281/zenodo.3571309.

  92. [92]

    HEPData repository, https://www.hepdata.net/record/ins1644367.

  93. [93]

    S. Frixione, Isolated photons in perturbative QCD, Phys. Lett.B 429 (1998) 369 [hep-ph/9801442] [INSPIRE].

  94. [94]

    NNPDF collaboration, Parton distributions from high-precision collider data, Eur. Phys. J.C 77 (2017) 663 [arXiv:1706.00428] [INSPIRE].

  95. [95]

    S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Diphoton production at the LHC: a QCD study up to NNLO, JHEP04 (2018) 142 [arXiv:1802.02095] [INSPIRE].

  96. [96]

    S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Diphoton production at hadron colliders: a fully-differential QCD calculation at NNLO, Phys. Rev. Lett.108 (2012) 072001 [Erratum ibid.117 (2016) 089901] [arXiv:1110.2375] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Correspondence to Herschel A. Chawdhry.

Additional information

ArXiv ePrint: 1911.00479

Electronic supplementary material

ESM 1

(TGZ 5 kb)

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chawdhry, H.A., Czakon, M., Mitov, A. et al. NNLO QCD corrections to three-photon production at the LHC. J. High Energ. Phys. 2020, 57 (2020). https://doi.org/10.1007/JHEP02(2020)057

Download citation

Keywords

  • QCD Phenomenology