Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Hot cosmic qubits: late-time de Sitter evolution and critical slowing down

  • 11 Accesses


Temporal evolution of a comoving qubit coupled to a scalar field in de Sitter space is studied with an emphasis on reliable extraction of late-time behaviour. The phenomenon of critical slowing down is observed if the effective mass is chosen to be sufficiently close to zero, which narrows the window of parameter space in which the Markovian approximation is valid. The dynamics of the system in this case are solved in a more general setting by accounting for non-Markovian effects in the evolution of the qubit state. Self-interactions for the scalar field are also incorporated, and reveal a breakdown of late-time perturbative predictions due to the presence of secular growth.

A preprint version of the article is available at ArXiv.


  1. [1]

    A.A. Starobinsky, Stochastic de Sitter (inflationary) stage in the early universe, Lect. Notes Phys.246 (1986) 107 [INSPIRE].

  2. [2]

    A.A. Starobinsky and J. Yokoyama, Equilibrium state of a selfinteracting scalar field in the de Sitter background, Phys. Rev.D 50 (1994) 6357 [astro-ph/9407016] [INSPIRE].

  3. [3]

    N.C. Tsamis and R.P. Woodard, Stochastic quantum gravitational inflation, Nucl. Phys.B 724 (2005) 295 [gr-qc/0505115] [INSPIRE].

  4. [4]

    C.P. Burgess, R. Holman and G. Tasinato, Open EFTs, IR effects & late-time resummations: systematic corrections in stochastic inflation, JHEP01 (2016) 153 [arXiv:1512.00169] [INSPIRE].

  5. [5]

    C.P. Burgess, R. Holman, G. Tasinato and M. Williams, EFT beyond the horizon: stochastic inflation and how primordial quantum fluctuations go classical, JHEP03 (2015) 090 [arXiv:1408.5002] [INSPIRE].

  6. [6]

    M.-A. Sakagami, Evolution from pure states into mixed states in de Sitter space, Prog. Theor. Phys.79 (1988) 442 [INSPIRE].

  7. [7]

    L.P. Grishchuk and Yu.V. Sidorov, On the quantum state of relic gravitons, Class. Quant. Grav.6 (1989) L161 [INSPIRE].

  8. [8]

    R.H. Brandenberger, R. Laflamme and M. Mijic, Classical perturbations from decoherence of quantum fluctuations in the inflationary universe, Mod. Phys. Lett.A 5 (1990) 2311 [INSPIRE].

  9. [9]

    E. Calzetta and B.L. Hu, Quantum fluctuations, decoherence of the mean field and structure formation in the early universe, Phys. Rev.D 52 (1995) 6770 [gr-qc/9505046] [INSPIRE].

  10. [10]

    C. Kiefer, D. Polarski and A.A. Starobinsky, Quantum to classical transition for fluctuations in the early universe, Int. J. Mod. Phys.D 7 (1998) 455 [gr-qc/9802003] [INSPIRE].

  11. [11]

    C. Kiefer and D. Polarski, Emergence of classicality for primordial fluctuations: concepts and analogies, Annalen Phys.7 (1998) 137 [gr-qc/9805014] [INSPIRE].

  12. [12]

    C. Agon, V. Balasubramanian, S. Kasko and A. Lawrence, Coarse grained quantum dynamics, Phys. Rev.D 98 (2018) 025019 [arXiv:1412.3148] [INSPIRE].

  13. [13]

    D. Boyanovsky, Effective field theory during inflation: reduced density matrix and its quantum master equation, Phys. Rev.D 92 (2015) 023527 [arXiv:1506.07395] [INSPIRE].

  14. [14]

    D. Boyanovsky, Effective field theory during inflation. II. Stochastic dynamics and power spectrum suppression, Phys. Rev.D 93 (2016) 043501 [arXiv:1511.06649] [INSPIRE].

  15. [15]

    E. Nelson, Quantum decoherence during inflation from gravitational nonlinearities, JCAP03 (2016) 022 [arXiv:1601.03734] [INSPIRE].

  16. [16]

    T.J. Hollowood and J.I. McDonald, Decoherence, discord and the quantum master equation for cosmological perturbations, Phys. Rev.D 95 (2017) 103521 [arXiv:1701.02235] [INSPIRE].

  17. [17]

    S. Shandera, N. Agarwal and A. Kamal, Open quantum cosmological system, Phys. Rev.D 98 (2018) 083535 [arXiv:1708.00493] [INSPIRE].

  18. [18]

    C. Ag´on and A. Lawrence, Divergences in open quantum systems, JHEP04 (2018) 008 [arXiv:1709.10095] [INSPIRE].

  19. [19]

    J. Martin and V. Vennin, Observational constraints on quantum decoherence during inflation, JCAP05 (2018) 063 [arXiv:1801.09949] [INSPIRE].

  20. [20]

    J. Martin and V. Vennin, Non Gaussianities from quantum decoherence during inflation, JCAP06 (2018) 037 [arXiv:1805.05609] [INSPIRE].

  21. [21]

    G. Kaplanek and C.P. Burgess, Hot accelerated qubits: decoherence, thermalization, secular growth and reliable late-time predictions, arXiv:1912.12951 [INSPIRE].

  22. [22]

    W.G. Unruh, Notes on black hole evaporation, Phys. Rev.D 14 (1976) 870 [INSPIRE].

  23. [23]

    B.S. DeWitt, Quantum gravity: the new synthesis, in General relativity, an Einstein centenary survey, S.W. Hawking and W. Israel eds., Cambridge University Press, Cambridge, U.K. (1979) [INSPIRE].

  24. [24]

    F. Benatti and R. Floreanini, Entanglement generation in uniformly accelerating atoms: reexamination of the Unruh effect, Phys. Rev.A 70 (2004) 012112 [quant-ph/0403157].

  25. [25]

    S.-Y. Lin and B.L. Hu, Backreaction and the Unruh effect: new insights from exact solutions of uniformly accelerated detectors, Phys. Rev.D 76 (2007) 064008 [gr-qc/0611062] [INSPIRE].

  26. [26]

    H.W. Yu, J. Zhang, H.-W. Yu and J.-L. Zhang, Understanding Hawking radiation in the framework of open quantum systems, Phys. Rev.D 77 (2008) 024031 [Erratum ibid.D 77 (2008) 029904] [arXiv:0806.3602] [INSPIRE].

  27. [27]

    H. Yu, Open quantum system approach to Gibbons-Hawking effect of de Sitter space-time, Phys. Rev. Lett.106 (2011) 061101 [arXiv:1101.5235] [INSPIRE].

  28. [28]

    J. Hu and H. Yu, Entanglement generation outside a Schwarzschild black hole and the Hawking effect, JHEP08 (2011) 137 [arXiv:1109.0335] [INSPIRE].

  29. [29]

    J. Hu and H. Yu, Geometric phase for an accelerated two-level atom and the Unruh effect, Phys. Rev.A 85 (2012) 032105 [arXiv:1203.5869] [INSPIRE].

  30. [30]

    M. Fukuma, Y. Sakatani and S. Sugishita, Master equation for the Unruh-DeWitt detector and the universal relaxation time in de Sitter space, Phys. Rev.D 89 (2014) 064024 [arXiv:1305.0256] [INSPIRE].

  31. [31]

    G. Menezes, N.F. Svaiter and C.A.D. Zarro, Entanglement dynamics in random media, Phys. Rev.A 96 (2017) 062119 [arXiv:1709.08702] [INSPIRE].

  32. [32]

    Z. Tian, J. Wang, J. Jing and A. Dragan, Entanglement enhanced thermometry in the detection of the Unruh effect, Annals Phys.377 (2017) 1 [arXiv:1603.01122] [INSPIRE].

  33. [33]

    D. Moustos and C. Anastopoulos, Non-Markovian time evolution of an accelerated qubit, Phys. Rev.D 95 (2017) 025020 [arXiv:1611.02477] [INSPIRE].

  34. [34]

    G. Menezes, Entanglement dynamics in a Kerr spacetime, Phys. Rev.D 97 (2018) 085021 [arXiv:1712.07151] [INSPIRE].

  35. [35]

    A. Chatterjee, S. Saha and C. Singha, How the mass of a scalar field influences resonance Casimir-Polder interaction in Schwarzschild spacetime, arXiv:1912.07502 [INSPIRE].

  36. [36]

    S. Nakajima, On quantum theory of transport phenomena, Progr. Theor. Phys.20 (1958) 948. [37] R. Zwanzig, Ensemble method in the theory of irreversibility, J. Chem. Phys.33 (1960) 1338.

  37. [38]

    D.W. Sciama, P. Candelas and D. Deutsch, Quantum field theory, horizons and thermodynamics, Adv. Phys.30 (1981) 327 [INSPIRE].

  38. [39]

    M. Scheffer et al., Early-warning signals for critical transitions, Nature461 (2009) 53.

  39. [40]

    M. Scheffer, Critical transitions in nature and society, Princeton University Press, Princeton, NJ, U.S.A. (2009).

  40. [41]

    S. Weinberg, Gravitation and cosmology: principles and applications of the general theory of relativity, John Wiley & Sons Inc., U.S.A. (1972).

  41. [42]

    C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation, W.H. Freeman & Company, U.S.A. (1973).

  42. [43]

    N.A. Chernikov and E.A. Tagirov, Quantum theory of scalar fields in de Sitter space-time, Ann. Inst. H. Poincaŕe Phys. Theor.A 9 (1968) 109 [INSPIRE].

  43. [44]

    C. Schomblond and P. Spindel, Conditions d’unicité pour le propagateur1 (x, y) du champ scalaire dans l’univers de de Sitter (in French), Ann. Inst. H. Poincaŕe Phys. Theor.25 (1976) 67.

  44. [45]

    T.S. Bunch and P.C.W. Davies, Quantum field theory in de Sitter space: renormalization by point splitting, Proc. Roy. Soc. Lond.A 360 (1978) 117 [INSPIRE].

  45. [46]

    P. Candelas and D.J. Raine, General relativistic quantum field theory — an exactly soluble model, Phys. Rev.D 12 (1975) 965 [INSPIRE].

  46. [47]

    E.B. Davies, Quantum theory of open systems, Academic Press, London, U.K. (1976).

  47. [48]

    R. Alicki and K. Lendi, Quantum dynamical semigroups and applications, Springer, Berlin, Heidelberg, Germany (1987).

  48. [49]

    R. Kubo, M. Toda and N. Hashitsume, Statistical physics II: nonequilibrium statistical mechanics, Springer, Berlin, Heidelberg, Germany (1995).

  49. [50]

    C.W. Gardiner and P. Zoller, Quantum noise: a handbook of Markovian and non-Markovian quantum stochastic methods with applications to quantum optics, Springer, Berlin, Heidelberg, Germany (2000).

  50. [51]

    U. Weiss, Quantum dissipative systems, World Scientific, Singapore (2000).

  51. [52]

    H.P. Breuer and F. Petruccione, The theory of open quantum systems, Oxford University Press, Oxford, U.K. (2002).

  52. [53]

    A. Rivas and S.F. Huelga, Open quantum systems: an introduction, Springer, Berlin, Heidelberg, Germany (2012).

  53. [54]

    G. Schaller, Open quantum systems far from equilibrium, Springer, Cham, Switzerland (2014).

  54. [55]

    R. Kubo, Statistical mechanical theory of irreversible processes. 1. General theory and simple applications in magnetic and conduction problems, J. Phys. Soc. Jap.12 (1957) 570 [INSPIRE].

  55. [56]

    P.C. Martin and J.S. Schwinger, Theory of many particle systems. 1, Phys. Rev.115 (1959) 1342 [INSPIRE].

  56. [57]

    G.W. Gibbons and S.W. Hawking, Cosmological event horizons, thermodynamics and particle creation, Phys. Rev.D 15 (1977) 2738 [INSPIRE].

  57. [58]

    S. Takagi, Vacuum noise and stress induced by uniform acceleration: Hawking-Unruh effect in Rindler manifold of arbitrary dimension, Prog. Theor. Phys. Suppl.88 (1986) 1 [INSPIRE].

  58. [59]

    N.D. Birrell and P.C.W. Davies, Quantum fields in curved space, Cambridge University Press, Cambridge, U.K. (1982).

  59. [60]

    A.D. Linde, The inflationary universe, Rept. Prog. Phys.47 (1984) 925 [INSPIRE].

  60. [61]

    E. Montroll, Nonequilibrium statistical mechanics, in Lectures in theoretical physics, volume III, W.E. Britten, B.W. Downs and J. Downs eds., Interscience, U.S.A. (1961), pg. 221.

  61. [62]

    S.M. Barnett and S. Stenholm, Hazards of reservoir memory, Phys. Rev.A 64 (2001) 033808.

  62. [63]

    A. Higuchi, Quantization of scalar and vector fields inside the cosmological event horizon and its application to Hawking effect, Class. Quant. Grav.4 (1987) 721 [INSPIRE].

  63. [64]

    B. Garbrecht and T. Prokopec, Unruh response functions for scalar fields in de Sitter space, Class. Quant. Grav.21 (2004) 4993 [gr-qc/0404058] [INSPIRE].

  64. [65]

    V. Gorini, A. Kossakowski and E.C.G. Sudarshan, Completely positive dynamical semigroups of N level systems, J. Math. Phys.17 (1976) 821 [INSPIRE].

  65. [66]

    G. Lindblad, On the generators of quantum dynamical semigroups, Commun. Math. Phys.48 (1976) 119 [INSPIRE].

  66. [67]

    V. Gorini, A. Frigerio, M. Verri, A. Kossakowski and E.C.G. Sudarshan, Properties of quantum Markovian master equations, Rept. Math. Phys.13 (1978) 149 [INSPIRE].

  67. [68]

    A.G. Redfield, The theory of relaxation processes, in Advances in magnetic resonance, Elsevier, The Netherlands (1965), pg. 1.

  68. [69]

    E.J. Hinch, Perturbation methods, Cambridge University Press, Cambridge, U.K. (1991). [70] A.H. Nayfeh, Perturbation methods, John Wiley & Sons Inc., U.S.A. (1973).

  69. [71]

    C.P. Burgess, J. Hainge, G. Kaplanek and M. Rummel, Failure of perturbation theory near horizons: the Rindler example, JHEP10 (2018) 122 [arXiv:1806.11415] [INSPIRE].

  70. [72]

    F. Tanaka, Coherent representation of dynamical renormalization group in Bose systems, Prog. Theor. Phys.54 (1975) 1679 [INSPIRE].

  71. [73]

    L.Y. Chen, N. Goldenfeld and Y. Oono, Renormalization group theory for global asymptotic analysis, Phys. Rev. Lett.73 (1994) 1311 [cond-mat/9407024] [INSPIRE].

  72. [74]

    L.-Y. Chen, N. Goldenfeld and Y. Oono, The renormalization group and singular perturbations: multiple scales, boundary layers and reductive perturbation theory, Phys. Rev.E 54 (1996) 376 [hep-th/9506161] [INSPIRE].

  73. [75]

    C.M. Bender and L.M.A. Bettencourt, Multiple scale analysis of the quantum anharmonic oscillator, Phys. Rev. Lett.77 (1996) 4114 [hep-th/9605181] [INSPIRE].

  74. [76]

    J. Berges, Introduction to nonequilibrium quantum field theory, AIP Conf. Proc.739 (2004) 3 [hep-ph/0409233] [INSPIRE].

  75. [77]

    Y. Urakawa and T. Tanaka, Influence on observation from IR divergence during inflation. I, Prog. Theor. Phys.122 (2009) 779 [arXiv:0902.3209] [INSPIRE].

  76. [78]

    L.H. Ford, Quantum instability of de Sitter space-time, Phys. Rev.D 31 (1985) 710 [INSPIRE].

  77. [79]

    A.D. Dolgov, M.B. Einhorn and V.I. Zakharov, On infrared effects in de Sitter background, Phys. Rev.D 52 (1995) 717 [gr-qc/9403056] [INSPIRE].

  78. [80]

    D. Boyanovsky and H.J. de Vega, Dynamical renormalization group approach to relaxation in quantum field theory, Annals Phys.307 (2003) 335 [hep-ph/0302055] [INSPIRE].

  79. [81]

    K. Enqvist, S. Nurmi, D. Podolsky and G.I. Rigopoulos, On the divergences of inflationary superhorizon perturbations, JCAP04 (2008) 025 [arXiv:0802.0395] [INSPIRE].

  80. [82]

    N. Bartolo, S. Matarrese, M. Pietroni, A. Riotto and D. Seery, On the physical significance of infra-red corrections to inflationary observables, JCAP01 (2008) 015 [arXiv:0711.4263] [INSPIRE].

  81. [83]

    S.B. Giddings and M.S. Sloth, Semiclassical relations and IR effects in de Sitter and slow-roll space-times, JCAP01 (2011) 023 [arXiv:1005.1056] [INSPIRE].

  82. [84]

    C.T. Byrnes, M. Gerstenlauer, A. Hebecker, S. Nurmi and G. Tasinato, Inflationary infrared divergences: geometry of the reheating surface versus δN formalism, JCAP08 (2010) 006 [arXiv:1005.3307] [INSPIRE].

  83. [85]

    S.B. Giddings and M.S. Sloth, Cosmological observables, IR growth of fluctuations and scale-dependent anisotropies, Phys. Rev.D 84 (2011) 063528 [arXiv:1104.0002] [INSPIRE].

  84. [86]

    M. Gerstenlauer, A. Hebecker and G. Tasinato, Inflationary correlation functions without infrared divergences, JCAP06 (2011) 021 [arXiv:1102.0560] [INSPIRE].

  85. [87]

    G. Petri, A diagrammatic approach to scalar field correlators during inflation, arXiv:0810.3330 [INSPIRE].

  86. [88]

    A. Riotto and M.S. Sloth, On resumming inflationary perturbations beyond one-loop, JCAP04 (2008) 030 [arXiv:0801.1845] [INSPIRE].

  87. [89]

    C.P. Burgess, L. Leblond, R. Holman and S. Shandera, Super-Hubble de Sitter fluctuations and the dynamical RG, JCAP03 (2010) 033 [arXiv:0912.1608] [INSPIRE].

  88. [90]

    C.P. Burgess, R. Holman, L. Leblond and S. Shandera, Breakdown of semiclassical methods in de Sitter space, JCAP10 (2010) 017 [arXiv:1005.3551] [INSPIRE].

  89. [91]

    F. Olver, D. Lozier, R. Boisvert and C. Clark, NIST handbook of mathematical function, Cambridge University Press, Cambridge, U.K. (2010).

  90. [92]

    I. Gradshteyn and M. Ryzhik, Table of integrals series and products, Academic Press, U.S.A. (1965).

  91. [93]

    G. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge, U.K. (1995).

  92. [94]

    A. Erdelyi, Higher transcendental functions: volume 1, McGraw-Hill Book Company, U.S.A. (1953).

  93. [95]

    S. De Bièvre and M. Merkli, The Unruh effect revisited, Class. Quant. Grav.23 (2006) 6525 [math-ph/0604023] [INSPIRE].

  94. [96]

    D. Moustos, Asymptotic states of accelerated detectors and universality of the Unruh effect, Phys. Rev.D 98 (2018) 065006 [arXiv:1806.10005] [INSPIRE].

  95. [97]

    B.A. Juárez-Aubry and D. Moustos, Asymptotic states for stationary Unruh-DeWitt detectors, Phys. Rev.D 100 (2019) 025018 [arXiv:1905.13542] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Correspondence to Greg Kaplanek.

Additional information

ArXiv ePrint: 1912.12955

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaplanek, G., Burgess, C. Hot cosmic qubits: late-time de Sitter evolution and critical slowing down. J. High Energ. Phys. 2020, 53 (2020).

Download citation


  • Effective Field Theories
  • Renormalization Group
  • Renormalization Regularization and Renormalons