Skip to main content

Eclectic flavor groups

A preprint version of the article is available at arXiv.

Abstract

The simultaneous study of top-down and bottom-up approaches to modular flavor symmetry leads necessarily to the concept of eclectic flavor groups. These are non-trivial products of modular and traditional flavor symmetries that exhibit the phenomenon of local flavor enhancement in moduli space. We develop methods to determine the eclectic flavor groups that can be consistently associated with a given traditional flavor symmetry. Applying these methods to a large family of prominent traditional flavor symmetries, we try to identify potential candidates for realistic eclectic flavor groups and show that they are relatively rare. Model building with finite modular flavor symmetries thus appears to be much more restrictive than previously thought.

References

  1. [1]

    F. Feruglio and A. Romanino, Neutrino Flavour Symmetries, arXiv:1912.06028 [INSPIRE].

  2. [2]

    F. Feruglio, Are neutrino masses modular forms?, in From My Vast Repertoire …: Guido Altarelli’s Legacy, A. Levy, S. Forte and G. Ridolfi eds., pp. 227–266 (2019) [DOI] [arXiv:1706.08749] [INSPIRE].

  3. [3]

    G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing, A4 and the modular symmetry, Nucl. Phys. B 741 (2006) 215 [hep-ph/0512103] [INSPIRE].

  4. [4]

    R. de Adelhart Toorop, F. Feruglio and C. Hagedorn, Finite Modular Groups and Lepton Mixing, Nucl. Phys. B 858 (2012) 437 [arXiv:1112.1340] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. [5]

    T. Kobayashi, K. Tanaka and T.H. Tatsuishi, Neutrino mixing from finite modular groups, Phys. Rev. D 98 (2018) 016004 [arXiv:1803.10391] [INSPIRE].

  6. [6]

    J.T. Penedo and S.T. Petcov, Lepton Masses and Mixing from Modular S4 Symmetry, Nucl. Phys. B 939 (2019) 292 [arXiv:1806.11040] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    J.C. Criado and F. Feruglio, Modular Invariance Faces Precision Neutrino Data, SciPost Phys. 5 (2018) 042 [arXiv:1807.01125] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    T. Kobayashi, N. Omoto, Y. Shimizu, K. Takagi, M. Tanimoto and T.H. Tatsuishi, Modular A4 invariance and neutrino mixing, JHEP 11 (2018) 196 [arXiv:1808.03012] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    P.P. Novichkov, J.T. Penedo, S.T. Petcov and A.V. Titov, Modular S4 models of lepton masses and mixing, JHEP 04 (2019) 005 [arXiv:1811.04933] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. [10]

    P.P. Novichkov, J.T. Penedo, S.T. Petcov and A.V. Titov, Modular A5 symmetry for flavour model building, JHEP 04 (2019) 174 [arXiv:1812.02158] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. [11]

    F.J. de Anda, S.F. King and E. Perdomo, SU(5) Grand Unified Theory with A4 Modular Symmetry, Phys. Rev. D 101 (2020) 015028 [arXiv:1812.05620] [INSPIRE].

  12. [12]

    H. Okada and M. Tanimoto, CP violation of quarks in A4 modular invariance, Phys. Lett. B 791 (2019) 54 [arXiv:1812.09677] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto, T.H. Tatsuishi and H. Uchida, Finite modular subgroups for fermion mass matrices and baryon/lepton number violation, Phys. Lett. B 794 (2019) 114 [arXiv:1812.11072] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  14. [14]

    P.P. Novichkov, S.T. Petcov and M. Tanimoto, Trimaximal Neutrino Mixing from Modular A4 Invariance with Residual Symmetries, Phys. Lett. B 793 (2019) 247 [arXiv:1812.11289] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. [15]

    G.-J. Ding, S.F. King and X.-G. Liu, Neutrino mass and mixing with A5 modular symmetry, Phys. Rev. D 100 (2019) 115005 [arXiv:1903.12588] [INSPIRE].

    ADS  Google Scholar 

  16. [16]

    T. Nomura and H. Okada, A modular A4 symmetric model of dark matter and neutrino, Phys. Lett. B 797 (2019) 134799 [arXiv:1904.03937] [INSPIRE].

    Article  Google Scholar 

  17. [17]

    P.P. Novichkov, J.T. Penedo, S.T. Petcov and A.V. Titov, Generalised CP Symmetry in Modular-Invariant Models of Flavour, JHEP 07 (2019) 165 [arXiv:1905.11970] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. [18]

    H. Okada and M. Tanimoto, Towards unification of quark and lepton flavors in A4 modular invariance, arXiv:1905.13421 [INSPIRE].

  19. [19]

    I. De Medeiros Varzielas, S.F. King and Y.-L. Zhou, Multiple modular symmetries as the origin of flavour, arXiv:1906.02208 [INSPIRE].

  20. [20]

    T. Nomura and H. Okada, A two loop induced neutrino mass model with modular A4 symmetry, arXiv:1906.03927 [INSPIRE].

  21. [21]

    T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto and T.H. Tatsuishi, Modular S3 invariant flavor model in SU(5) GUT, arXiv:1906.10341 [INSPIRE].

  22. [22]

    X.-G. Liu and G.-J. Ding, Neutrino Masses and Mixing from Double Covering of Finite Modular Groups, JHEP 08 (2019) 134 [arXiv:1907.01488] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  23. [23]

    H. Okada and Y. Orikasa, Modular S3 symmetric radiative seesaw model, Phys. Rev. D 100 (2019) 115037 [arXiv:1907.04716] [INSPIRE].

    ADS  Google Scholar 

  24. [24]

    T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto and T.H. Tatsuishi, New A4 lepton flavor model from S4 modular symmetry, arXiv:1907.09141 [INSPIRE].

  25. [25]

    G.-J. Ding, S.F. King and X.-G. Liu, Modular A4 symmetry models of neutrinos and charged leptons, JHEP 09 (2019) 074 [arXiv:1907.11714] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    H. Okada and Y. Orikasa, A radiative seesaw model in modular A4 symmetry, arXiv:1907.13520 [INSPIRE].

  27. [27]

    S.F. King and Y.-L. Zhou, Trimaximal TM1 mixing with two modular S4 groups, Phys. Rev. D 101 (2020) 015001 [arXiv:1908.02770] [INSPIRE].

  28. [28]

    T. Nomura, H. Okada and O. Popov, A modular A4 symmetric scotogenic model, arXiv:1908.07457 [INSPIRE].

  29. [29]

    H. Okada and Y. Orikasa, Neutrino mass model with a modular S4 symmetry, arXiv:1908.08409 [INSPIRE].

  30. [30]

    J.C. Criado, F. Feruglio, F. Feruglio and S.J.D. King, Modular Invariant Models of Lepton Masses at Levels 4 and 5, arXiv:1908.11867 [INSPIRE].

  31. [31]

    T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto and T.H. Tatsuishi, A4 lepton flavor model and modulus stabilization from S4 modular symmetry, Phys. Rev. D 100 (2019) 115045 [arXiv:1909.05139] [INSPIRE].

    ADS  Google Scholar 

  32. [32]

    T. Asaka, Y. Heo, T.H. Tatsuishi and T. Yoshida, Modular A4 invariance and leptogenesis, JHEP 01 (2020) 144 [arXiv:1909.06520] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  33. [33]

    M.-C. Chen, S. Ramos-Sánchez and M. Ratz, A note on the predictions of models with modular flavor symmetries, Phys. Lett. B 801 (2020) 135153 [arXiv:1909.06910] [INSPIRE].

  34. [34]

    G.-J. Ding, S.F. King, X.-G. Liu and J.-N. Lu, Modular S4 and A4 symmetries and their fixed points: new predictive examples of lepton mixing, JHEP 12 (2019) 030 [arXiv:1910.03460] [INSPIRE].

    ADS  Article  Google Scholar 

  35. [35]

    D. Zhang, A modular A4 symmetry realization of two-zero textures of the Majorana neutrino mass matrix, Nucl. Phys. B 952 (2020) 114935 [arXiv:1910.07869] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  36. [36]

    X. Wang and S. Zhou, The Minimal Seesaw Model with a Modular S4 Symmetry, arXiv:1910.09473 [INSPIRE].

  37. [37]

    T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto, T.H. Tatsuishi and H. Uchida, CP violation in modular invariant flavor models, arXiv:1910.11553 [INSPIRE].

  38. [38]

    T. Nomura, H. Okada and S. Patra, An Inverse Seesaw model with A4-modular symmetry, arXiv:1912.00379 [INSPIRE].

  39. [39]

    T. Kobayashi, T. Nomura and T. Shimomura, Type II seesaw models with modular A4 symmetry, arXiv:1912.00637 [INSPIRE].

  40. [40]

    J.-N. Lu, X.-G. Liu and G.-J. Ding, Modular symmetry origin of texture zeros and quark lepton unification, arXiv:1912.07573 [INSPIRE].

  41. [41]

    X. Wang, Lepton Flavor Mixing and CP-violation in the Minimal Type-(I+II) Seesaw Model with a Modular A4 Symmetry, arXiv:1912.13284 [INSPIRE].

  42. [42]

    A. Baur, H.P. Nilles, A. Trautner and P.K.S. Vaudrevange, Unification of Flavor, CP and Modular Symmetries, Phys. Lett. B 795 (2019) 7 [arXiv:1901.03251] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  43. [43]

    A. Baur, H.P. Nilles, A. Trautner and P.K.S. Vaudrevange, A String Theory of Flavor and C P , Nucl. Phys. B 947 (2019) 114737 [arXiv:1908.00805] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  44. [44]

    T. Kobayashi, S. Nagamoto and S. Uemura, Modular symmetry in magnetized/intersecting D-brane models, PTEP 2017 (2017) 023B02 [arXiv:1608.06129] [INSPIRE].

  45. [45]

    T. Kobayashi, S. Nagamoto, S. Takada, S. Tamba and T.H. Tatsuishi, Modular symmetry and non-Abelian discrete flavor symmetries in string compactification, Phys. Rev. D 97 (2018) 116002 [arXiv:1804.06644] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  46. [46]

    T. Kobayashi and S. Tamba, Modular forms of finite modular subgroups from magnetized D-brane models, Phys. Rev. D 99 (2019) 046001 [arXiv:1811.11384] [INSPIRE].

  47. [47]

    Y. Kariyazono, T. Kobayashi, S. Takada, S. Tamba and H. Uchida, Modular symmetry anomaly in magnetic flux compactification, Phys. Rev. D 100 (2019) 045014 [arXiv:1904.07546] [INSPIRE].

  48. [48]

    T. Kobayashi, H.P. Nilles, F. Ploger, S. Raby and M. Ratz, Stringy origin of non-Abelian discrete flavor symmetries, Nucl. Phys. B 768 (2007) 135 [hep-ph/0611020] [INSPIRE].

  49. [49]

    S. Groot Nibbelink and P.K.S. Vaudrevange, T-duality orbifolds of heterotic Narain compactifications, JHEP 04 (2017) 030 [arXiv:1703.05323] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  50. [50]

    The GAP Group, GAP — Groups, Algorithms, and Programming, Version 4.10.2, (2019). [51] J.-P. Serre, Trees, Springer Berlin Heidelberg (1980).

  51. [52]

    L.J. Dixon, V. Kaplunovsky and J. Louis, On Effective Field Theories Describing (2, 2) Vacua of the Heterotic String, Nucl. Phys. B 329 (1990) 27 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  52. [53]

    L.E. Ibáñez and D. Lüst, Duality anomaly cancellation, minimal string unification and the effective low-energy Lagrangian of 4-D strings, Nucl. Phys. B 382 (1992) 305 [hep-th/9202046] [INSPIRE].

  53. [54]

    Y. Olguín-Trejo and S. Ramos-Sánchez, Kähler potential of heterotic orbifolds with multiple Kähler moduli, J. Phys. Conf. Ser. 912 (2017) 012029 [arXiv:1707.09966] [INSPIRE].

  54. [55]

    F. Feruglio, C. Hagedorn and R. Ziegler, Lepton Mixing Parameters from Discrete and CP Symmetries, JHEP 07 (2013) 027 [arXiv:1211.5560] [INSPIRE].

    ADS  Article  Google Scholar 

  55. [56]

    M. Holthausen, M. Lindner and M.A. Schmidt, CP and Discrete Flavour Symmetries, JHEP 04 (2013) 122 [arXiv:1211.6953] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  56. [57]

    M.-C. Chen, M. Fallbacher, K.T. Mahanthappa, M. Ratz and A. Trautner, CP Violation from Finite Groups, Nucl. Phys. B 883 (2014) 267 [arXiv:1402.0507] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  57. [58]

    H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada and M. Tanimoto, Non-Abelian Discrete Symmetries in Particle Physics, Prog. Theor. Phys. Suppl. 183 (2010) 1 [arXiv:1003.3552] [INSPIRE].

    ADS  Article  Google Scholar 

  58. [59]

    T. Dent, CP violation and modular symmetries, Phys. Rev. D 64 (2001) 056005 [hep-ph/0105285] [INSPIRE].

  59. [60]

    J.A. Escobar and C. Luhn, The Flavor Group ∆(6n2), J. Math. Phys. 50 (2009) 013524 [arXiv:0809.0639] [INSPIRE].

  60. [61]

    C.S. Lam, The Unique Horizontal Symmetry of Leptons, Phys. Rev. D 78 (2008) 073015 [arXiv:0809.1185] [INSPIRE].

  61. [62]

    H. Ishimori, T. Kobayashi, H. Okada, Y. Shimizu and M. Tanimoto, Lepton Flavor Model from Delta(54) Symmetry, JHEP 04 (2009) 011 [arXiv:0811.4683] [INSPIRE].

    ADS  Article  Google Scholar 

  62. [63]

    W. Grimus and L. Lavoura, Tri-bimaximal lepton mixing from symmetry only, JHEP 04 (2009) 013 [arXiv:0811.4766] [INSPIRE].

    ADS  Article  Google Scholar 

  63. [64]

    D. Jurciukonis and L. Lavoura, GAP listing of the finite subgroups of U(3) of order smaller than 2000, PTEP 2017 (2017) 053A03 [arXiv:1702.00005] [INSPIRE].

  64. [65]

    C.-Y. Yao and G.-J. Ding, Lepton and Quark Mixing Patterns from Finite Flavor Symmetries, Phys. Rev. D 92 (2015) 096010 [arXiv:1505.03798] [INSPIRE].

  65. [66]

    S.F. King and P.O. Ludl, Direct and Semi-Direct Approaches to Lepton Mixing with a Massless Neutrino, JHEP 06 (2016) 147 [arXiv:1605.01683] [INSPIRE].

    ADS  Article  Google Scholar 

  66. [67]

    C. Hagedorn, A. Meroni and L. Vitale, Mixing patterns from the groups Σ(), J. Phys. A 47 (2014) 055201 [arXiv:1307.5308] [INSPIRE].

  67. [68]

    F. Beye, T. Kobayashi and S. Kuwakino, Gauge Origin of Discrete Flavor Symmetries in Heterotic Orbifolds, Phys. Lett. B 736 (2014) 433 [arXiv:1406.4660] [INSPIRE].

    ADS  Article  Google Scholar 

  68. [69]

    H.P. Nilles, M. Ratz, A. Trautner and P.K.S. Vaudrevange, \( \mathcal{CP} \) violation from string theory, Phys. Lett. B 786 (2018) 283 [arXiv:1808.07060] [INSPIRE].

    ADS  Article  Google Scholar 

  69. [70]

    H.P. Nilles et al., work in progress.

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Saúl Ramos-Sánchez.

Additional information

ArXiv ePrint: 2001.01736

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nilles, H.P., Ramos-Sánchez, S. & Vaudrevange, P.K.S. Eclectic flavor groups. J. High Energ. Phys. 2020, 45 (2020). https://doi.org/10.1007/JHEP02(2020)045

Download citation

Keywords

  • Beyond Standard Model
  • Discrete Symmetries
  • Global Symmetries
  • Quark Masses and SM Parameters