Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

In search of large signals at the cosmological collider

  • 18 Accesses


We look for oscillating signals in the primordial bispectrum from new physics heavy particles which are visibly large for next generation large scale structures (LSS) survey. We show that in ordinary inflation scenarios where a slow-rolling inflaton generates density fluctuations and with no breaking of scale invariance or spacetime symmetry, there exist no naturally large signals unless the rolling inflaton generates a parity-odd chemical potential for the heavy particles. We estimate the accessibility of this signal through observations. While current CMB data are already sensitive in the most optimistic scenario, future probes, including LSS survey and 21 cm observation, can cover interesting regions of the model space.

A preprint version of the article is available at ArXiv.


  1. [1]

    X. Chen and Y. Wang, Quasi-Single Field Inflation and Non-Gaussianities, JCAP04 (2010) 027 [arXiv:0911.3380] [INSPIRE].

  2. [2]

    X. Chen and Y. Wang, Quasi-Single Field Inflation with Large Mass, JCAP09 (2012) 021 [arXiv:1205.0160] [INSPIRE].

  3. [3]

    N. Arkani-Hamed and J. Maldacena, Cosmological Collider Physics, arXiv:1503.08043 [INSPIRE].

  4. [4]

    H. Lee, D. Baumann and G.L. Pimentel, Non-Gaussianity as a Particle Detector, JHEP12 (2016) 040 [arXiv:1607.03735] [INSPIRE].

  5. [5]

    X. Chen, Y. Wang and Z.-Z. Xianyu, Loop Corrections to Standard Model Fields in Inflation, JHEP08 (2016) 051 [arXiv:1604.07841] [INSPIRE].

  6. [6]

    X. Chen, Y. Wang and Z.-Z. Xianyu, Standard Model Background of the Cosmological Collider, Phys. Rev. Lett.118 (2017) 261302 [arXiv:1610.06597] [INSPIRE].

  7. [7]

    X. Chen, Y. Wang and Z.-Z. Xianyu, Standard Model Mass Spectrum in Inflationary Universe, JHEP04 (2017) 058 [arXiv:1612.08122] [INSPIRE].

  8. [8]

    X. Chen, Y. Wang and Z.-Z. Xianyu, Schwinger-Keldysh Diagrammatics for Primordial Perturbations, JCAP12 (2017) 006 [arXiv:1703.10166] [INSPIRE].

  9. [9]

    X. Chen, Y. Wang and Z.-Z. Xianyu, Neutrino Signatures in Primordial Non-Gaussianities, JHEP09 (2018) 022 [arXiv:1805.02656] [INSPIRE].

  10. [10]

    X. Chen, W.Z. Chua, Y. Guo, Y. Wang, Z.-Z. Xianyu and T. Xie, Quantum Standard Clocks in the Primordial Trispectrum, JCAP05 (2018) 049 [arXiv:1803.04412] [INSPIRE].

  11. [11]

    H. An, M. McAneny, A.K. Ridgway and M.B. Wise, Quasi Single Field Inflation in the non-perturbative regime, JHEP06 (2018) 105 [arXiv:1706.09971] [INSPIRE].

  12. [12]

    A.V. Iyer, S. Pi, Y. Wang, Z. Wang and S. Zhou, Strongly Coupled Quasi-Single Field Inflation, JCAP01 (2018) 041 [arXiv:1710.03054] [INSPIRE].

  13. [13]

    S. Kumar and R. Sundrum, Heavy-Lifting of Gauge Theories By Cosmic Inflation, JHEP05 (2018) 011 [arXiv:1711.03988] [INSPIRE].

  14. [14]

    S. Kumar and R. Sundrum, Seeing Higher-Dimensional Grand Unification In Primordial Non-Gaussianities, JHEP04 (2019) 120 [arXiv:1811.11200] [INSPIRE].

  15. [15]

    S. Kumar and R. Sundrum, Cosmological Collider Physics and the Curvaton, arXiv:1908.11378 [INSPIRE].

  16. [16]

    Y. Wang, Y.-P. Wu, J. Yokoyama and S. Zhou, Hybrid Quasi-Single Field Inflation, JCAP07 (2018) 068 [arXiv:1804.07541] [INSPIRE].

  17. [17]

    S. Lu, Y. Wang and Z.-Z. Xianyu, A Cosmological Higgs Collider, arXiv:1907.07390 [INSPIRE].

  18. [18]

    A. Hook, J. Huang and D. Racco, Searches for other vacua II: A new Higgstory at the cosmological collider, JHEP01 (2020) 105 [arXiv:1907.10624] [INSPIRE].

  19. [19]

    A. Hook, J. Huang and D. Racco, Minimal signatures of the Standard Model in non-Gaussianities, arXiv:1908.00019 [INSPIRE].

  20. [20]

    Y.-P. Wu, Higgs as heavy-lifted physics during inflation, JHEP04 (2019) 125 [arXiv:1812.10654] [INSPIRE].

  21. [21]

    S. Alexander, S.J. Gates, L. Jenks, K. Koutrolikos and E. McDonough, Higher Spin Supersymmetry at the Cosmological Collider: Sculpting SUSY Rilles in the CMB, JHEP10 (2019) 156 [arXiv:1907.05829] [INSPIRE].

  22. [22]

    S. Pi and M. Sasaki, Curvature Perturbation Spectrum in Two-field Inflation with a Turning Trajectory, JCAP10 (2012) 051 [arXiv:1205.0161] [INSPIRE].

  23. [23]

    J.-O. Gong, S. Pi and M. Sasaki, Equilateral non-Gaussianity from heavy fields, JCAP11 (2013) 043 [arXiv:1306.3691] [INSPIRE].

  24. [24]

    Planck collaboration, Planck 2018 results. IX. Constraints on primordial non-Gaussianity, arXiv:1905.05697 [INSPIRE].

  25. [25]

    O. Doré et al., Cosmology with the SPHEREX All-Sky Spectral Survey, arXiv:1412.4872 [INSPIRE].

  26. [26]

    J.B. Muñoz, Y. Ali-Haïmoud and M. Kamionkowski, Primordial non-Gaussianity from the bispectrum of 21-cm fluctuations in the dark ages, Phys. Rev.D 92 (2015) 083508 [arXiv:1506.04152] [INSPIRE].

  27. [27]

    P.D. Meerburg, M. Münchmeyer, J.B. Muñoz and X. Chen, Prospects for Cosmological Collider Physics, JCAP03 (2017) 050 [arXiv:1610.06559] [INSPIRE].

  28. [28]

    P.D. Meerburg et al., Primordial Non-Gaussianity, arXiv:1903.04409 [INSPIRE].

  29. [29]

    P. Adshead and E.I. Sfakianakis, Fermion production during and after axion inflation, JCAP11 (2015) 021 [arXiv:1508.00891] [INSPIRE].

  30. [30]

    P. Adshead, J.T. Giblin, T.R. Scully and E.I. Sfakianakis, Gauge-preheating and the end of axion inflation, JCAP12 (2015) 034 [arXiv:1502.06506] [INSPIRE].

  31. [31]

    P. Adshead and E.I. Sfakianakis, Leptogenesis from left-handed neutrino production during axion inflation, Phys. Rev. Lett.116 (2016) 091301 [arXiv:1508.00881] [INSPIRE].

  32. [32]

    P. Agrawal, N. Kitajima, M. Reece, T. Sekiguchi and F. Takahashi, Relic Abundance of Dark Photon Dark Matter, Phys. Lett.B 801 (2020) 135136 [arXiv:1810.07188] [INSPIRE].

  33. [33]

    K.V. Berghaus, P.W. Graham and D.E. Kaplan, Minimal Warm Inflation, arXiv:1910.07525 [INSPIRE].

  34. [34]

    R. Flauger, M. Mirbabayi, L. Senatore and E. Silverstein, Productive Interactions: heavy particles and non-Gaussianity, JCAP10 (2017) 058 [arXiv:1606.00513] [INSPIRE].

  35. [35]

    W.Z. Chua, Q. Ding, Y. Wang and S. Zhou, Imprints of Schwinger Effect on Primordial Spectra, JHEP04 (2019) 066 [arXiv:1810.09815] [INSPIRE].

  36. [36]

    X. Tong, Y. Wang and S. Zhou, Unsuppressed primordial standard clocks in warm quasi-single field inflation, JCAP06 (2018) 013 [arXiv:1801.05688] [INSPIRE].

  37. [37]

    C. Cheung, P. Creminelli, A.L. Fitzpatrick, J. Kaplan and L. Senatore, The Effective Field Theory of Inflation, JHEP03 (2008) 014 [arXiv:0709.0293] [INSPIRE].

  38. [38]

    D. Baumann, Primordial Cosmology, PoS(TASI2017)009 [arXiv:1807.03098] [INSPIRE].

  39. [39]

    D. Baumann and D. Green, Signatures of Supersymmetry from the Early Universe, Phys. Rev.D 85 (2012) 103520 [arXiv:1109.0292] [INSPIRE].

  40. [40]

    T. Liu, X. Tong, Y. Wang and Z.-Z. Xianyu, Probing P and CP-violations on the Cosmological Collider, arXiv:1909.01819 [INSPIRE].

  41. [41]

    R. Jackiw and S.Y. Pi, Chern-Simons modification of general relativity, Phys. Rev.D 68 (2003) 104012 [gr-qc/0308071] [INSPIRE].

  42. [42]

    A. Lue, L.-M. Wang and M. Kamionkowski, Cosmological signature of new parity violating interactions, Phys. Rev. Lett.83 (1999) 1506 [astro-ph/9812088] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Correspondence to Zhong-Zhi Xianyu.

Additional information

ArXiv ePrint: 1910.12876

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Xianyu, Z. In search of large signals at the cosmological collider. J. High Energ. Phys. 2020, 44 (2020). https://doi.org/10.1007/JHEP02(2020)044

Download citation


  • Cosmology of Theories beyond the SM
  • Beyond Standard Model
  • Effective Field Theories