In search of large signals at the cosmological collider

Abstract

We look for oscillating signals in the primordial bispectrum from new physics heavy particles which are visibly large for next generation large scale structures (LSS) survey. We show that in ordinary inflation scenarios where a slow-rolling inflaton generates density fluctuations and with no breaking of scale invariance or spacetime symmetry, there exist no naturally large signals unless the rolling inflaton generates a parity-odd chemical potential for the heavy particles. We estimate the accessibility of this signal through observations. While current CMB data are already sensitive in the most optimistic scenario, future probes, including LSS survey and 21 cm observation, can cover interesting regions of the model space.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    X. Chen and Y. Wang, Quasi-Single Field Inflation and Non-Gaussianities, JCAP04 (2010) 027 [arXiv:0911.3380] [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    X. Chen and Y. Wang, Quasi-Single Field Inflation with Large Mass, JCAP09 (2012) 021 [arXiv:1205.0160] [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    N. Arkani-Hamed and J. Maldacena, Cosmological Collider Physics, arXiv:1503.08043 [INSPIRE].

  4. [4]

    H. Lee, D. Baumann and G.L. Pimentel, Non-Gaussianity as a Particle Detector, JHEP12 (2016) 040 [arXiv:1607.03735] [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    X. Chen, Y. Wang and Z.-Z. Xianyu, Loop Corrections to Standard Model Fields in Inflation, JHEP08 (2016) 051 [arXiv:1604.07841] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  6. [6]

    X. Chen, Y. Wang and Z.-Z. Xianyu, Standard Model Background of the Cosmological Collider, Phys. Rev. Lett.118 (2017) 261302 [arXiv:1610.06597] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    X. Chen, Y. Wang and Z.-Z. Xianyu, Standard Model Mass Spectrum in Inflationary Universe, JHEP04 (2017) 058 [arXiv:1612.08122] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  8. [8]

    X. Chen, Y. Wang and Z.-Z. Xianyu, Schwinger-Keldysh Diagrammatics for Primordial Perturbations, JCAP12 (2017) 006 [arXiv:1703.10166] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  9. [9]

    X. Chen, Y. Wang and Z.-Z. Xianyu, Neutrino Signatures in Primordial Non-Gaussianities, JHEP09 (2018) 022 [arXiv:1805.02656] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    X. Chen, W.Z. Chua, Y. Guo, Y. Wang, Z.-Z. Xianyu and T. Xie, Quantum Standard Clocks in the Primordial Trispectrum, JCAP05 (2018) 049 [arXiv:1803.04412] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. [11]

    H. An, M. McAneny, A.K. Ridgway and M.B. Wise, Quasi Single Field Inflation in the non-perturbative regime, JHEP06 (2018) 105 [arXiv:1706.09971] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  12. [12]

    A.V. Iyer, S. Pi, Y. Wang, Z. Wang and S. Zhou, Strongly Coupled Quasi-Single Field Inflation, JCAP01 (2018) 041 [arXiv:1710.03054] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  13. [13]

    S. Kumar and R. Sundrum, Heavy-Lifting of Gauge Theories By Cosmic Inflation, JHEP05 (2018) 011 [arXiv:1711.03988] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  14. [14]

    S. Kumar and R. Sundrum, Seeing Higher-Dimensional Grand Unification In Primordial Non-Gaussianities, JHEP04 (2019) 120 [arXiv:1811.11200] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. [15]

    S. Kumar and R. Sundrum, Cosmological Collider Physics and the Curvaton, arXiv:1908.11378 [INSPIRE].

  16. [16]

    Y. Wang, Y.-P. Wu, J. Yokoyama and S. Zhou, Hybrid Quasi-Single Field Inflation, JCAP07 (2018) 068 [arXiv:1804.07541] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  17. [17]

    S. Lu, Y. Wang and Z.-Z. Xianyu, A Cosmological Higgs Collider, arXiv:1907.07390 [INSPIRE].

  18. [18]

    A. Hook, J. Huang and D. Racco, Searches for other vacua II: A new Higgstory at the cosmological collider, JHEP01 (2020) 105 [arXiv:1907.10624] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    A. Hook, J. Huang and D. Racco, Minimal signatures of the Standard Model in non-Gaussianities, arXiv:1908.00019 [INSPIRE].

  20. [20]

    Y.-P. Wu, Higgs as heavy-lifted physics during inflation, JHEP04 (2019) 125 [arXiv:1812.10654] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  21. [21]

    S. Alexander, S.J. Gates, L. Jenks, K. Koutrolikos and E. McDonough, Higher Spin Supersymmetry at the Cosmological Collider: Sculpting SUSY Rilles in the CMB, JHEP10 (2019) 156 [arXiv:1907.05829] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    S. Pi and M. Sasaki, Curvature Perturbation Spectrum in Two-field Inflation with a Turning Trajectory, JCAP10 (2012) 051 [arXiv:1205.0161] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    J.-O. Gong, S. Pi and M. Sasaki, Equilateral non-Gaussianity from heavy fields, JCAP11 (2013) 043 [arXiv:1306.3691] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  24. [24]

    Planck collaboration, Planck 2018 results. IX. Constraints on primordial non-Gaussianity, arXiv:1905.05697 [INSPIRE].

  25. [25]

    O. Doré et al., Cosmology with the SPHEREX All-Sky Spectral Survey, arXiv:1412.4872 [INSPIRE].

  26. [26]

    J.B. Muñoz, Y. Ali-Haïmoud and M. Kamionkowski, Primordial non-Gaussianity from the bispectrum of 21-cm fluctuations in the dark ages, Phys. Rev.D 92 (2015) 083508 [arXiv:1506.04152] [INSPIRE].

  27. [27]

    P.D. Meerburg, M. Münchmeyer, J.B. Muñoz and X. Chen, Prospects for Cosmological Collider Physics, JCAP03 (2017) 050 [arXiv:1610.06559] [INSPIRE].

  28. [28]

    P.D. Meerburg et al., Primordial Non-Gaussianity, arXiv:1903.04409 [INSPIRE].

  29. [29]

    P. Adshead and E.I. Sfakianakis, Fermion production during and after axion inflation, JCAP11 (2015) 021 [arXiv:1508.00891] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    P. Adshead, J.T. Giblin, T.R. Scully and E.I. Sfakianakis, Gauge-preheating and the end of axion inflation, JCAP12 (2015) 034 [arXiv:1502.06506] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  31. [31]

    P. Adshead and E.I. Sfakianakis, Leptogenesis from left-handed neutrino production during axion inflation, Phys. Rev. Lett.116 (2016) 091301 [arXiv:1508.00881] [INSPIRE].

  32. [32]

    P. Agrawal, N. Kitajima, M. Reece, T. Sekiguchi and F. Takahashi, Relic Abundance of Dark Photon Dark Matter, Phys. Lett.B 801 (2020) 135136 [arXiv:1810.07188] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  33. [33]

    K.V. Berghaus, P.W. Graham and D.E. Kaplan, Minimal Warm Inflation, arXiv:1910.07525 [INSPIRE].

  34. [34]

    R. Flauger, M. Mirbabayi, L. Senatore and E. Silverstein, Productive Interactions: heavy particles and non-Gaussianity, JCAP10 (2017) 058 [arXiv:1606.00513] [INSPIRE].

    ADS  Article  Google Scholar 

  35. [35]

    W.Z. Chua, Q. Ding, Y. Wang and S. Zhou, Imprints of Schwinger Effect on Primordial Spectra, JHEP04 (2019) 066 [arXiv:1810.09815] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  36. [36]

    X. Tong, Y. Wang and S. Zhou, Unsuppressed primordial standard clocks in warm quasi-single field inflation, JCAP06 (2018) 013 [arXiv:1801.05688] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  37. [37]

    C. Cheung, P. Creminelli, A.L. Fitzpatrick, J. Kaplan and L. Senatore, The Effective Field Theory of Inflation, JHEP03 (2008) 014 [arXiv:0709.0293] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  38. [38]

    D. Baumann, Primordial Cosmology, PoS(TASI2017)009 [arXiv:1807.03098] [INSPIRE].

  39. [39]

    D. Baumann and D. Green, Signatures of Supersymmetry from the Early Universe, Phys. Rev.D 85 (2012) 103520 [arXiv:1109.0292] [INSPIRE].

    ADS  Google Scholar 

  40. [40]

    T. Liu, X. Tong, Y. Wang and Z.-Z. Xianyu, Probing P and CP-violations on the Cosmological Collider, arXiv:1909.01819 [INSPIRE].

  41. [41]

    R. Jackiw and S.Y. Pi, Chern-Simons modification of general relativity, Phys. Rev.D 68 (2003) 104012 [gr-qc/0308071] [INSPIRE].

  42. [42]

    A. Lue, L.-M. Wang and M. Kamionkowski, Cosmological signature of new parity violating interactions, Phys. Rev. Lett.83 (1999) 1506 [astro-ph/9812088] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhong-Zhi Xianyu.

Additional information

ArXiv ePrint: 1910.12876

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, LT., Xianyu, ZZ. In search of large signals at the cosmological collider. J. High Energ. Phys. 2020, 44 (2020). https://doi.org/10.1007/JHEP02(2020)044

Download citation

Keywords

  • Cosmology of Theories beyond the SM
  • Beyond Standard Model
  • Effective Field Theories