Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Isospin-violating contributions to ∈/∈

Abstract

The known isospin-breaking contributions to the K → ππ amplitudes are reanalyzed, taking into account our current understanding of the quark masses and the relevant non-perturbative inputs. We present a complete numerical reappraisal of the direct CP-violating ratio ∈/∈, where these corrections play a quite significant role. We obtain the Standard Model prediction Re (∈/∈) = (14 ± 5) · 104, which is in very good agreement with the measured ratio. The uncertainty, which has been estimated conservatively, is dominated by our current ignorance about 1/NC-suppressed contributions to some relevant chiral-perturbation-theory low-energy constants.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    V. Cirigliano et al., Kaon decays in the standard model, Rev. Mod. Phys.84 (2012) 399 [arXiv:1107.6001] [INSPIRE].

  2. [2]

    V. Cirigliano, G. Ecker, H. Neufeld and A. Pich, Isospin breaking in K → ππ decays, Eur. Phys. J.C 33 (2004) 369 [hep-ph/0310351] [INSPIRE].

  3. [3]

    G. Ecker et al., Electromagnetism in nonleptonic weak interactions, Nucl. Phys.B 591 (2000) 419 [hep-ph/0006172] [INSPIRE].

  4. [4]

    H. Gisbert and A. Pich, Direct CP-violation in K0→ ππ: standard model status, Rept. Prog. Phys.81 (2018) 076201 [arXiv:1712.06147] [INSPIRE].

  5. [5]

    RBC, UKQCD collaboration, Standard model prediction for direct CP-violation in K toππ decay, Phys. Rev. Lett.115 (2015) 212001 [arXiv:1505.07863] [INSPIRE].

  6. [6]

    T. Blum et al., K → ππI = 3/2 decay amplitude in the continuum limit, Phys. Rev.D 91 (2015) 074502 [arXiv:1502.00263] [INSPIRE].

  7. [7]

    V. Cirigliano, A. Pich, G. Ecker and H. Neufeld, Isospin violation in ∈ , Phys. Rev. Lett.91 (2003) 162001 [hep-ph/0307030] [INSPIRE].

  8. [8]

    V. Cirigliano, G. Ecker and A. Pich, Reanalysis of pion pion phase shifts from K → ππ decays, Phys. Lett.B 679 (2009) 445 [arXiv:0907.1451] [INSPIRE].

  9. [9]

    J.F. Donoghue, E. Golowich, B.R. Holstein and J. Trampetic, Electromagnetic and isospin breaking effects decrease/∈, Phys. Lett.B 179 (1986) 361 [Erratum ibid.B 188 (1987) 511] [INSPIRE].

  10. [10]

    A.J. Buras and J.M. Gerard, Isospin breaking contributions to/∈, Phys. Lett.B 192 (1987) 156 [INSPIRE].

  11. [11]

    H.-Y. Cheng, Isospin breaking effects on theI = 3/2, K → ππ amplitudes, Phys. Lett.B 201 (1988) 155 [INSPIRE].

  12. [12]

    M. Lusignoli, Electromagnetic corrections to the effective Hamiltonian for strangeness changing decays and/∈, Nucl. Phys.B 325 (1989) 33 [INSPIRE].

  13. [13]

    C.E. Wolfe and K. Maltman, The strong isospin breaking correction for the gluonic penguin contribution to/∈ at next-to-leading order in the chiral expansion, Phys. Rev.D 63 (2001) 014008 [hep-ph/0007319] [INSPIRE].

  14. [14]

    A.J. Buras, F. De Fazio and J. Girrbach, ∆I = 1/2 rule, ε/ε and K → πν \( \overline{\nu} \)in Z (Z ) and Gmodels with FCNC quark couplings, Eur. Phys. J.C 74 (2014) 2950 [arXiv:1404.3824] [INSPIRE].

  15. [15]

    A.J. Buras, D. Buttazzo and R. Knegjens, K → πν \( \overline{\nu} \)and/∈ in simplified new physics models, JHEP11 (2015) 166 [arXiv:1507.08672] [INSPIRE].

  16. [16]

    M. Blanke, A.J. Buras and S. Recksiegel, Quark flavour observables in the littlest Higgs model with T-parity after LHC Run 1, Eur. Phys. J.C 76 (2016) 182 [arXiv:1507.06316] [INSPIRE].

  17. [17]

    A.J. Buras and F. De Fazio, ε/ε in 331 models, JHEP03 (2016) 010 [arXiv:1512.02869] [INSPIRE].

  18. [18]

    A.J. Buras and F. De Fazio, 331 models facing the tensions inF = 2 processes with the impact on ε/ε, Bs→ μ+μand B → Kμ+μ , JHEP08 (2016) 115 [arXiv:1604.02344] [INSPIRE].

  19. [19]

    A.J. Buras, New physics patterns in ε/ε and 𝜀Kwith implications for rare kaon decays andMK , JHEP04 (2016) 071 [arXiv:1601.00005] [INSPIRE].

  20. [20]

    T. Kitahara, U. Nierste and P. Tremper, Supersymmetric explanation of CP-violation in K → ππ decays, Phys. Rev. Lett.117 (2016) 091802 [arXiv:1604.07400] [INSPIRE].

  21. [21]

    T. Kitahara, U. Nierste and P. Tremper, Singularity-free next-to-leading orderS = 1 renormalization group evolution and \( {\varepsilon}_K^{\prime }/{\varepsilon}_K \)in the standard model and beyond, JHEP12 (2016) 078 [arXiv:1607.06727] [INSPIRE].

  22. [22]

    M. Endo, S. Mishima, D. Ueda and K. Yamamoto, Chargino contributions in light of recent/∈, Phys. Lett.B 762 (2016) 493 [arXiv:1608.01444] [INSPIRE].

  23. [23]

    M. Endo, T. Kitahara, S. Mishima and K. Yamamoto, Revisiting kaon physics in general Z scenario, Phys. Lett.B 771 (2017) 37 [arXiv:1612.08839] [INSPIRE].

  24. [24]

    V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, An ∈improvement from right-handed currents, Phys. Lett.B 767 (2017) 1 [arXiv:1612.03914] [INSPIRE].

  25. [25]

    S. Alioli et al., Right-handed charged currents in the era of the Large Hadron Collider, JHEP05 (2017) 086 [arXiv:1703.04751] [INSPIRE].

  26. [26]

    C. Bobeth, A.J. Buras, A. Celis and M. Jung, Patterns of flavour violation in models with vector-like quarks, JHEP04 (2017) 079 [arXiv:1609.04783] [INSPIRE].

  27. [27]

    C. Bobeth, A.J. Buras, A. Celis and M. Jung, Yukawa enhancement of Z -mediated new physics inS = 2 andB = 2 processes, JHEP07 (2017) 124 [arXiv:1703.04753] [INSPIRE].

  28. [28]

    A. Crivellin, G. D’Ambrosio, T. Kitahara and U. Nierste, K → πν \( \overline{\nu} \)in the MSSM in light of the \( {\in}_K^{\prime }/{\in}_K \)anomaly, Phys. Rev.D 96 (2017) 015023 [arXiv:1703.05786] [INSPIRE].

  29. [29]

    V. Chobanova et al., Probing SUSY effects in \( {K}_S^0 \)→ μ+μ , JHEP05 (2018) 024 [arXiv:1711.11030] [INSPIRE].

  30. [30]

    C. Bobeth and A.J. Buras, Leptoquarks meet ε/ε and rare Kaon processes, JHEP02 (2018) 101 [arXiv:1712.01295] [INSPIRE].

  31. [31]

    M. Endo et al., Gluino-mediated electroweak penguin with flavor-violating trilinear couplings, JHEP04 (2018) 019 [arXiv:1712.04959] [INSPIRE].

  32. [32]

    C.-H. Chen and T. Nomura, Kand/∈ in a diquark model, JHEP03 (2019) 009 [arXiv:1808.04097] [INSPIRE].

  33. [33]

    J. Aebischer et al., Master formula for ε/ε beyond the standard model, Phys. Lett.B 792 (2019) 465 [arXiv:1807.02520] [INSPIRE].

  34. [34]

    J. Aebischer, A.J. Buras and J.-M. Gérard, BSM hadronic matrix elements for/∈ and K → ππ decays in the Dual QCD approach, JHEP02 (2019) 021 [arXiv:1807.01709] [INSPIRE].

  35. [35]

    N. Haba, H. Umeeda and T. Yamada, Direct CP-violation in Cabibbo-Favored charmed meson decays and/∈ in SU(2)L× SU(2)R× U(1)B−Lmodel, JHEP10 (2018) 006 [arXiv:1806.03424] [INSPIRE].

  36. [36]

    S. Matsuzaki, K. Nishiwaki and K. Yamamoto, Simultaneous interpretation of K and B anomalies in terms of chiral-flavorful vectors, JHEP11 (2018) 164 [arXiv:1806.02312] [INSPIRE].

  37. [37]

    C.-H. Chen and T. Nomura, ∈/∈ from charged-Higgs-induced gluonic dipole operators, Phys. Lett.B 787 (2018) 182 [arXiv:1805.07522] [INSPIRE].

  38. [38]

    C.-H. Chen and T. Nomura, Re \( \left({\in}_K^{\prime }/{\in}_K\right) \) and K → πν\( \overline{\nu} \)in a two-Higgs doublet model, JHEP08 (2018) 145 [arXiv:1804.06017] [INSPIRE].

  39. [39]

    N. Haba, H. Umeeda and T. Yamada, ∈/∈ Anomaly and Neutron EDM in SU(2)L× SU(2)R× U(1)B−Lmodel with charge symmetry, JHEP05 (2018) 052 [arXiv:1802.09903] [INSPIRE].

  40. [40]

    A. Crivellin, C. Gross, S. Pokorski and L. Vernazza, Correlating/∈ to hadronic B decays via U(2)3flavour symmetry, 2019, arXiv:1909.02101 [INSPIRE].

  41. [41]

    L. Calibbi et al., Z models with less-minimal flavour violation, arXiv:1910.00014 [INSPIRE].

  42. [42]

    FlaviaNet Working Group on Kaon Decays collaboration, An evaluation of |Vus| and precise tests of the standard model from world data on leptonic and semileptonic kaon decays, Eur. Phys. J.C 69 (2010) 399 [arXiv:1005.2323] [INSPIRE].

  43. [43]

    A.J. Buras, M. Jamin and M.E. Lautenbacher, The anatomy of/∈ beyond leading logarithms with improved hadronic matrix elements, Nucl. Phys.B 408 (1993) 209 [hep-ph/9303284] [INSPIRE].

  44. [44]

    A.J. Buras, M. Jamin and M.E. Lautenbacher, A 1996 analysis of the CP-violating ratio/∈, Phys. Lett.B 389 (1996) 749 [hep-ph/9608365] [INSPIRE].

  45. [45]

    S. Bosch et al., Standard model confronting new results for/∈, Nucl. Phys.B 565 (2000) 3 [hep-ph/9904408] [INSPIRE].

  46. [46]

    A.J. Buras et al., ∈/∈ and rare K and B decays in the MSSM, Nucl. Phys.B 592 (2001) 55 [hep-ph/0007313] [INSPIRE].

  47. [47]

    M. Ciuchini et al., An upgraded analysis of ∈∈ at the next-to-leading order, Z. Phys.C 68 (1995) 239 [hep-ph/9501265] [INSPIRE].

  48. [48]

    M. Ciuchini, E. Franco, G. Martinelli and L. Reina, ∈/∈ at the next-to-leading order in QCD and QED, Phys. Lett.B 301 (1993) 263 [hep-ph/9212203] [INSPIRE].

  49. [49]

    A.J. Buras and J.-M. Gérard, Upper bounds on/∈ parameters \( {B}_6^{\left(1/2\right)} \)and \( {B}_8^{\left(3/2\right)} \)from large N QCD and other news, JHEP12 (2015) 008 [arXiv:1507.06326] [INSPIRE].

  50. [50]

    A.J. Buras and J.-M. Gerard, Final state interactions in K → ππ decays:I = 1/2 rule vs. ε/ε, Eur. Phys. J.C 77 (2017) 10 [arXiv:1603.05686] [INSPIRE].

  51. [51]

    A.J. Buras, M. Gorbahn, S. Jäger and M. Jamin, Improved anatomy of ε/ε in the standard model, JHEP11 (2015) 202 [arXiv:1507.06345] [INSPIRE].

  52. [52]

    S. Aoki et al., Review of lattice results concerning low-energy particle physics, Eur. Phys. J.C 77 (2017) 112 [arXiv:1607.00299] [INSPIRE].

  53. [53]

    G. Ecker, J. Gasser, A. Pich and E. de Rafael, The role of resonances in chiral perturbation theory, Nucl. Phys.B 321 (1989) 311 [INSPIRE].

  54. [54]

    G. Ecker et al., Chiral lagrangians for massive spin 1 fields, Phys. Lett.B 223 (1989) 425 [INSPIRE].

  55. [55]

    A. Pich, Colorless mesons in a polychromatic world, in the proceedings of the Phenomenology of large NcQCD, January 9–1, Tempe, U.S.A. (2002), hep-ph/0205030 [INSPIRE].

  56. [56]

    V. Cirigliano et al., Towards a consistent estimate of the chiral low-energy constants, Nucl. Phys.B 753 (2006) 139 [hep-ph/0603205] [INSPIRE].

  57. [57]

    R. Kaiser, ηcontributions to the chiral low-energy constants, Nucl. Phys. Proc. Suppl.174 (2007) 97 [INSPIRE].

  58. [58]

    V. Cirigliano et al., The < V AP > Green function in the resonance region, Phys. Lett.B 596 (2004) 96 [hep-ph/0404004] [INSPIRE].

  59. [59]

    V. Cirigliano et al., The < SP P > Green function and SU(3) breaking in K.ℓ3decays, JHEP04 (2005) 006 [hep-ph/0503108] [INSPIRE].

  60. [60]

    P.D. Ruiz-Femenia, A. Pich and J. Portoles, Odd intrinsic parity processes within the resonance effective theory of QCD, JHEP07 (2003) 003 [hep-ph/0306157] [INSPIRE].

  61. [61]

    M. Jamin, J.A. Oller and A. Pich, Order p6chiral couplings from the scalar K π form-factor, JHEP02 (2004) 047 [hep-ph/0401080] [INSPIRE].

  62. [62]

    I. Rosell, J.J. Sanz-Cillero and A. Pich, Quantum loops in the resonance chiral theory: the vector form-factor, JHEP08 (2004) 042 [hep-ph/0407240] [INSPIRE].

  63. [63]

    I. Rosell, J.J. Sanz-Cillero and A. Pich, Towards a determination of the chiral couplings at NLO in 1/NC: \( {L}_8^r \) (μ), JHEP01 (2007) 039 [hep-ph/0610290] [INSPIRE].

  64. [64]

    A. Pich, I. Rosell and J.J. Sanz-Cillero, Form-factors and current correlators: chiral couplings \( {L}_{10}^r \) (μ) and \( {C}_{87}^r \) (μ) at NLO in 1/NC , JHEP07 (2008) 014 [arXiv:0803.1567] [INSPIRE].

  65. [65]

    M. Gonzalez-Alonso, A. Pich and J. Prades, Determination of the chiral couplings L10and C87from semileptonic tau decays, Phys. Rev.D 78 (2008) 116012 [arXiv:0810.0760] [INSPIRE].

  66. [66]

    A. Pich, I. Rosell and J.J. Sanz-Cillero, The vector form factor at the next-to-leading order in 1/NC: chiral couplings L9 (μ) and C88 (μ)–C90 (μ), JHEP02 (2011) 109 [arXiv:1011.5771] [INSPIRE].

  67. [67]

    J. Bijnens and G. Ecker, Mesonic low-energy constants, Ann. Rev. Nucl. Part. Sci.64 (2014) 149 [arXiv:1405.6488] [INSPIRE].

  68. [68]

    M. González-Alonso, A. Pich and A. Rodŕıguez-Sánchez, Updated determination of chiral couplings and vacuum condensates from hadronic τ decay data, Phys. Rev.D 94 (2016) 014017 [arXiv:1602.06112] [INSPIRE].

  69. [69]

    B. Ananthanarayan, J. Bijnens, S. Friot and S. Ghosh, Analytic representation of FK/Fπin two loop chiral perturbation theory, Phys. Rev.D 97 (2018) 091502 [arXiv:1711.11328] [INSPIRE].

  70. [70]

    G. Buchalla, A.J. Buras and M.E. Lautenbacher, Weak decays beyond leading logarithms, Rev. Mod. Phys.68 (1996) 1125 [hep-ph/9512380] [INSPIRE].

  71. [71]

    A.J. Buras, M. Jamin, M.E. Lautenbacher and P.H. Weisz, Effective Hamiltonians forS = 1 andB = 1 nonleptonic decays beyond the leading logarithmic approximation, Nucl. Phys.B 370 (1992) 69 [INSPIRE].

  72. [72]

    A.J. Buras, M. Jamin, M.E. Lautenbacher and P.H. Weisz, Two loop anomalous dimension matrix forS = 1 weak nonleptonic decays I: O \( {\alpha}_s^2 \), Nucl. Phys.B 400 (1993) 37 [hep-ph/9211304] [INSPIRE].

  73. [73]

    A.J. Buras, M. Jamin and M.E. Lautenbacher, Two loop anomalous dimension matrix forS = 1 weak nonleptonic decays. II. O(ααs), Nucl. Phys.B 400 (1993) 75 [hep-ph/9211321] [INSPIRE].

  74. [74]

    M. Ciuchini, E. Franco, G. Martinelli and L. Reina, TheS = 1 effective Hamiltonian including next-to-leading order QCD and QED corrections, Nucl. Phys.B 415 (1994) 403 [hep-ph/9304257] [INSPIRE].

  75. [75]

    M. Cerd`a-Sevilla, M. Gorbahn, S. Jäger and A. Kokulu, Towards NNLO accuracy for ε/ε, J. Phys. Conf. Ser.800 (2017) 012008 [arXiv:1611.08276] [INSPIRE].

  76. [76]

    A.J. Buras, P. Gambino and U.A. Haisch, Electroweak penguin contributions to nonleptonicF = 1 decays at NNLO, Nucl. Phys.B 570 (2000) 117 [hep-ph/9911250] [INSPIRE].

  77. [77]

    M. Gorbahn and U. Haisch, Effective Hamiltonian for non-leptonic |F | = 1 decays at NNLO in QCD, Nucl. Phys.B 713 (2005) 291 [hep-ph/0411071] [INSPIRE].

  78. [78]

    A. Pich, Effective field theory with Nambu-Goldstone modes, in the proceedings of the Les Houches summer school: EFT in Particle Physics and Cosmology, July 3–28, Les Houches, France (2018), arXiv:1804.05664 [INSPIRE].

  79. [79]

    S. Weinberg, Phenomenological lagrangians, PhysicaA 96 (1979) 327 [INSPIRE].

  80. [80]

    J. Gasser and H. Leutwyler, Chiral perturbation theory: expansions in the mass of the strange quark, Nucl. Phys.B 250 (1985) 465 [INSPIRE].

  81. [81]

    H.W. Fearing and S. Scherer, Extension of the chiral perturbation theory meson Lagrangian to order p6 , Phys. Rev.D 53 (1996) 315 [hep-ph/9408346] [INSPIRE].

  82. [82]

    J. Bijnens, G. Colangelo and G. Ecker, The mesonic chiral Lagrangian of order p6 , JHEP02 (1999) 020 [hep-ph/9902437] [INSPIRE].

  83. [83]

    J. Bijnens, N. Hermansson-Truedsson and S. Wang, The order p8mesonic chiral Lagrangian, JHEP01 (2019) 102 [arXiv:1810.06834] [INSPIRE].

  84. [84]

    J.A. Cronin, Phenomenological model of strong and weak interactions in chiral U(3) × U(3), Phys. Rev.161 (1967) 1483 [INSPIRE].

  85. [85]

    J. Kambor, J.H. Missimer and D. Wyler, The chiral loop expansion of the nonleptonic weak interactions of mesons, Nucl. Phys.B 346 (1990) 17 [INSPIRE].

  86. [86]

    G. Ecker, J. Kambor and D. Wyler, Resonances in the weak chiral Lagrangian, Nucl. Phys.B 394 (1993) 101 [INSPIRE].

  87. [87]

    J. Bijnens, E. Pallante and J. Prades, Obtaining K → ππ from off-shell K → π amplitudes, Nucl. Phys.B 521 (1998) 305 [hep-ph/9801326] [INSPIRE].

  88. [88]

    R. Urech, Virtual photons in chiral perturbation theory, Nucl. Phys.B 433 (1995) 234 [hep-ph/9405341] [INSPIRE].

  89. [89]

    J. Bijnens and M. B. Wise, Electromagnetic contribution to/∈, Phys. Lett.B 137 (1984) 245.

  90. [90]

    B. Grinstein, S.-J. Rey and M.B. Wise, CP violation in charged kaon decay, Phys. Rev.D 33 (1986) 1495 [INSPIRE].

  91. [91]

    J. Bijnens and F. Borg, Isospin breaking in K → 3π decays III: Bremsstrahlung and fit to experiment, Eur. Phys. J.C 40 (2005) 383 [hep-ph/0501163] [INSPIRE].

  92. [92]

    Flavour Lattice Averaging Group collaboration, FLAG review 2019, arXiv:1902.08191 [INSPIRE].

  93. [93]

    G. Ecker, G. Muller, H. Neufeld and A. Pich, π0η mixing and CP-violation, Phys. Lett.B 477 (2000) 88 [hep-ph/9912264] [INSPIRE].

  94. [94]

    V. Cirigliano et al., Radiative corrections to Kl3decays, Eur. Phys. J.C 23 (2002) 121 [hep-ph/0110153] [INSPIRE].

  95. [95]

    M. Knecht, H. Neufeld, H. Rupertsberger and P. Talavera, Chiral perturbation theory with virtual photons and leptons, Eur. Phys. J.C 12 (2000) 469 [hep-ph/9909284] [INSPIRE].

  96. [96]

    E. Pallante, A. Pich and I. Scimemi, The standard model prediction for/∈, Nucl. Phys.B 617 (2001) 441 [hep-ph/0105011] [INSPIRE].

  97. [97]

    F. Herren and M. Steinhauser, Version 3 of RunDec and CRunDec, Comput. Phys. Commun.224 (2018) 333 [arXiv:1703.03751] [INSPIRE].

  98. [98]

    G. ’t Hooft and M.J.G. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys.B 44 (1972) 189 [INSPIRE].

  99. [99]

    ATLAS collaboration, Measurement of the top-quark mass in t \( \overline{t} \) + 1-jet events collected with the ATLAS detector in pp collisions at \( \sqrt{s} \) = 8 TeV, JHEP11 (2019) 150 [arXiv:1905.02302] [INSPIRE].

  100. [100]

    W.A. Bardeen, A.J. Buras and J.M. Gerard, A consistent analysis of theI = 1/2 rule for K decays, Phys. Lett.B 192 (1987) 138 [INSPIRE].

  101. [101]

    A. Pich and E. de Rafael, Four quark operators and nonleptonic weak transitions, Nucl. Phys.B 358 (1991) 311 [INSPIRE].

  102. [102]

    J.F. Donoghue and E. Golowich, Anatomy of a weak matrix element, Phys. Lett.B 315 (1993) 406 [hep-ph/9307263] [INSPIRE].

  103. [103]

    M. Jamin and A. Pich, QCD corrections to inclusiveS = 1, 2 transitions at the next-to-leading order, Nucl. Phys.B 425 (1994) 15 [hep-ph/9402363] [INSPIRE].

  104. [104]

    A. Pich and E. de Rafael, Weak K amplitudes in the chiral and 1/ncexpansions, Phys. Lett.B 374 (1996) 186 [hep-ph/9511465] [INSPIRE].

  105. [105]

    V. Antonelli et al., TheS = 1 weak chiral lagrangian as the effective theory of the chiral quark model, Nucl. Phys.B 469 (1996) 143 [hep-ph/9511255] [INSPIRE].

  106. [106]

    V. Antonelli, S. Bertolini, M. Fabbrichesi and E.I. Lashin, TheI = 1/2 selection rule, Nucl. Phys.B 469 (1996) 181 [hep-ph/9511341] [INSPIRE].

  107. [107]

    S. Bertolini, J.O. Eeg, M. Fabbrichesi and E.I. Lashin, TheI = 1/2 rule and BKat O(p4 ) in the chiral expansion, Nucl. Phys.B 514 (1998) 63 [hep-ph/9705244] [INSPIRE].

  108. [108]

    T. Hambye et al., 1/Nccorrections to the hadronic matrix elements of Q6and Q8in K → ππ decays, Phys. Rev.D 58 (1998) 014017 [hep-ph/9802300] [INSPIRE].

  109. [109]

    M. Knecht, S. Peris and E. de Rafael, Matrix elements of electroweak penguin operators in the 1/Nc expansion, Phys. Lett.B 457 (1999) 227 [hep-ph/9812471] [INSPIRE].

  110. [110]

    J. Bijnens and J. Prades, TheI = 1/2 rule in the chiral limit, JHEP01 (1999) 023 [hep-ph/9811472] [INSPIRE].

  111. [111]

    J.F. Donoghue and E. Golowich, Dispersive calculation of \( {B}_7^{\left(3/2\right)} \)and \( {B}_8^{\left(3/2\right)} \)in the chiral limit, Phys. Lett.B 478 (2000) 172 [hep-ph/9911309] [INSPIRE].

  112. [112]

    J. Bijnens and J. Prades, \( {\in}_K^{\prime }/{\in}_K \)in the chiral limit, JHEP06 (2000) 035 [hep-ph/0005189] [INSPIRE].

  113. [113]

    S. Bertolini, J.O. Eeg and M. Fabbrichesi, An updated analysis of/∈ in the standard model with hadronic matrix elements from the chiral quark model, Phys. Rev.D 63 (2001) 056009 [hep-ph/0002234] [INSPIRE].

  114. [114]

    S. Narison, New QCD estimate of the kaon penguin matrix elements and/∈, Nucl. Phys.B 593 (2001) 3 [hep-ph/0004247] [INSPIRE].

  115. [115]

    V. Cirigliano, J.F. Donoghue, E. Golowich and K. Maltman, Determination of 〈(ππ)I = 2|Q7, 8|K0in the chiral limit, Phys. Lett.B 522 (2001) 245 [hep-ph/0109113] [INSPIRE].

  116. [116]

    J. Bijnens, E. Gamiz and J. Prades, Matching the electroweak penguins Q7, Q8and spectral correlators, JHEP10 (2001) 009 [hep-ph/0108240] [INSPIRE].

  117. [117]

    M. Knecht, S. Peris and E. de Rafael, A critical reassessment of Q7and Q8matrix elements, Phys. Lett.B 508 (2001) 117 [hep-ph/0102017] [INSPIRE].

  118. [118]

    V. Cirigliano, J.F. Donoghue, E. Golowich and K. Maltman, Improved determination of the electroweak penguin contribution to/∈ in the chiral limit, Phys. Lett.B 555 (2003) 71 [hep-ph/0211420] [INSPIRE].

  119. [119]

    T. Hambye, S. Peris and E. de Rafael, ∆I = 1/2 and/∈ in large NcQCD, JHEP05 (2003) 027 [hep-ph/0305104] [INSPIRE].

  120. [120]

    A.J. Buras, J.-M. Gérard and W.A. Bardeen, Large N approach to kaon decays and mixing 28 years later:I = 1/2 rule, \( {\hat{B}}_K \)andMK , Eur. Phys. J.C 74 (2014) 2871 [arXiv:1401.1385] [INSPIRE].

  121. [121]

    A. Rodríguez-Sánchez and A. Pich, Confronting hadronic tau decays with non-leptonic kaon decays, Nucl. Part. Phys. Proc.300-302 (2018) 131 [arXiv:1811.06706] [INSPIRE].

  122. [122]

    R.J. Dowdall, C.T.H. Davies, G.P. Lepage and C. McNeile, Vusfrom π and K decay constants in full lattice QCD with physical u, d, s and c quarks, Phys. Rev.D 88 (2013) 074504 [arXiv:1303.1670] [INSPIRE].

  123. [123]

    V. Cirigliano, G. Ecker, H. Neufeld and A. Pich, Meson resonances, large Ncand chiral symmetry, JHEP06 (2003) 012 [hep-ph/0305311] [INSPIRE].

  124. [124]

    B. Moussallam, A Sum rule approach to the violation of Dashen’s theorem, Nucl. Phys.B 504 (1997) 381 [hep-ph/9701400] [INSPIRE].

  125. [125]

    B. Ananthanarayan and B. Moussallam, Four-point correlator constraints on electromagnetic chiral parameters and resonance effective Lagrangians, JHEP06 (2004) 047 [hep-ph/0405206] [INSPIRE].

  126. [126]

    J. Bijnens and J. Prades, Electromagnetic corrections for pions and kaons: Masses and polarizabilities, Nucl. Phys.B 490 (1997) 239 [hep-ph/9610360] [INSPIRE].

  127. [127]

    M. Albaladejo and B. Moussallam, Extended chiral Khuri-Treimanformalism for η → 3π and the role of the a0 (980), f0 (980) resonances, Eur. Phys. J.C 77 (2017) 508 [arXiv:1702.04931] [INSPIRE].

  128. [128]

    Particle Data Group collaboration, Review of particle physics, Phys. Rev.D 98 (2018) 030001 [INSPIRE].

  129. [129]

    G. Colangelo, J. Gasser and H. Leutwyler, ππ scattering, Nucl. Phys.B 603 (2001) 125 [hep-ph/0103088] [INSPIRE].

  130. [130]

    M. Di Carlo et al., Light-meson leptonic decay rates in lattice QCD+QED, Phys. Rev.D 100 (2019) 034514 [arXiv:1904.08731] [INSPIRE].

  131. [131]

    NA48 collaboration, A precision measurement of direct CP-violation in the decay of neutral kaons into two pions, Phys. Lett.B 544 (2002) 97 [hep-ex/0208009] [INSPIRE].

  132. [132]

    NA48 collaboration, A precise measurement of the direct CP-violation parameter Re(∈/∈), Eur. Phys. J.C 22 (2001) 231 [hep-ex/0110019] [INSPIRE].

  133. [133]

    NA48 collaboration, A new measurement of direct CP-violation in two pion decays of the neutral kaon, Phys. Lett.B 465 (1999) 335 [hep-ex/9909022] [INSPIRE].

  134. [134]

    NA31 collaboration, A new measurement of direct CP-violation in the neutral kaon system, Phys. Lett.B 317 (1993) 233 [INSPIRE].

  135. [135]

    NA31 collaboration, First evidence for direct CP-violation, Phys. Lett.B 206 (1988) 169 [INSPIRE].

  136. [136]

    KTeV collaboration, Precise measurements of direct CP-violation, CPT symmetry and other parameters in the neutral kaon system, Phys. Rev.D 83 (2011) 092001 [arXiv:1011.0127] [INSPIRE].

  137. [137]

    KTeV collaboration, Measurements of direct CP-violation, CPT symmetry and other parameters in the neutral kaon system, Phys. Rev.D 67 (2003) 012005 [Erratum ibid.D 70 (2004) 079904] [hep-ex/0208007] [INSPIRE].

  138. [138]

    KTeV collaboration, Observation of direct CP-violation in KS,L→ ππ decays, Phys. Rev. Lett.83 (1999) 22 [hep-ex/9905060] [INSPIRE].

  139. [139]

    L.K. Gibbons et al., Measurement of the CP-violation parameter Re(∈/∈), Phys. Rev. Lett.70 (1993) 1203 [INSPIRE].

  140. [140]

    J.A. Oller, The mixing angle of the lightest scalar nonet, Nucl. Phys.A 727 (2003) 353 [hep-ph/0306031] [INSPIRE].

  141. [141]

    M. Jamin, J.A. Oller and A. Pich, S wave K π scattering in chiral perturbation theory with resonances, Nucl. Phys.B 587 (2000) 331 [hep-ph/0006045] [INSPIRE].

  142. [142]

    T. Ledwig et al., Large-Ncnaturalness in coupled-channel meson-meson scattering, Phys. Rev.D 90 (2014) 114020 [arXiv:1407.3750] [INSPIRE].

  143. [143]

    I. Caprini, G. Colangelo and H. Leutwyler, Mass and width of the lowest resonance in QCD, Phys. Rev. Lett.96 (2006) 132001 [hep-ph/0512364] [INSPIRE].

  144. [144]

    J.R. Pelaez, From controversy to precision on the sigma meson: a review on the status of the non-ordinary f0 (500) resonance, Phys. Rept.658 (2016) 1 [arXiv:1510.00653] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Correspondence to A. Rodríguez-Sánchez.

Additional information

ArXiv ePrint: 1911.01359

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cirigliano, V., Gisbert, H., Pich, A. et al. Isospin-violating contributions to ∈/∈. J. High Energ. Phys. 2020, 32 (2020). https://doi.org/10.1007/JHEP02(2020)032

Download citation

Keywords

  • Chiral Lagrangians
  • CP violation
  • Effective Field Theories
  • Kaon Physics