Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Transverse momentum dependent parton densities in a proton from the generalized DAS approach

  • 4 Accesses

Abstract

We use the Bessel-inspired behavior of parton densities at small Bjorken x values, obtained in the case of the flat initial conditions for DGLAP evolution equations in the double scaling QCD approximation (DAS), to evaluate the transverse momentum dependent (TMD, or unintegrated) quark and gluon distribution functions in a proton. The calculations are performed analytically using the Kimber-Martin-Ryskin (KMR) prescription with different implementation of kinematical constraint, reflecting the angular and strong ordering conditions. The relations between the differential and integral formulation of the KMR approach is discussed. Several phenomenological applications of the proposed TMD parton densities to the LHC processes are given.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    R. Angeles-Martinez et al., Transverse Momentum Dependent (TMD) parton distribution functions: status and prospects, Acta Phys. Polon.B 46 (2015) 2501 [arXiv:1507.05267] [INSPIRE].

  2. [2]

    J.C. Collins, D.E. Soper and G.F. Sterman, Factorization for One Loop Corrections in the Drell-Yan Process, Nucl. Phys.B 223 (1983) 381 [INSPIRE].

  3. [3]

    J.C. Collins, D.E. Soper and G.F. Sterman, Transverse Momentum Distribution in Drell-Yan Pair and W and Z Boson Production, Nucl. Phys.B 250 (1985) 199 [INSPIRE].

  4. [4]

    S. Catani, M. Ciafaloni and F. Hautmann, High-energy factorization and small x heavy flavor production, Nucl. Phys.B 366 (1991) 135 [INSPIRE].

  5. [5]

    J.C. Collins and R.K. Ellis, Heavy quark production in very high-energy hadron collisions, Nucl. Phys.B 360 (1991) 3 [INSPIRE].

  6. [6]

    L.V. Gribov, E.M. Levin and M.G. Ryskin, Semihard Processes in QCD, Phys. Rept.100 (1983) 1 [INSPIRE].

  7. [7]

    E.M. Levin, M.G. Ryskin, Yu.M. Shabelski and A.G. Shuvaev, Heavy quark production in semihard nucleon interactions, Sov. J. Nucl. Phys.53 (1991) 657 [INSPIRE].

  8. [8]

    E.A. Kuraev, L.N. Lipatov and V.S. Fadin, Multi-Reggeon Processes in the Yang-Mills Theory, Sov. Phys. JETP44 (1976) 443 [INSPIRE].

  9. [9]

    E.A. Kuraev, L.N. Lipatov and V.S. Fadin, The Pomeranchuk Singularity in Nonabelian Gauge Theories, Sov. Phys. JETP45 (1977) 199 [INSPIRE].

  10. [10]

    I.I. Balitsky and L.N. Lipatov, The Pomeranchuk Singularity in Quantum Chromodynamics, Sov. J. Nucl. Phys.28 (1978) 822 [INSPIRE].

  11. [11]

    M. Ciafaloni, Coherence Effects in Initial Jets at Small Q2/s, Nucl. Phys.B 296 (1988) 49 [INSPIRE].

  12. [12]

    S. Catani, F. Fiorani and G. Marchesini, QCD Coherence in Initial State Radiation, Phys. Lett.B 234 (1990) 339 [INSPIRE].

  13. [13]

    S. Catani, F. Fiorani and G. Marchesini, Small x Behavior of Initial State Radiation in Perturbative QCD, Nucl. Phys.B 336 (1990) 18 [INSPIRE].

  14. [14]

    G. Marchesini, QCD coherence in the structure function and associated distributions at small x, Nucl. Phys.B 445 (1995) 49 [hep-ph/9412327] [INSPIRE].

  15. [15]

    A.V. Lipatov, M.A. Malyshev and H. Jung, TMD parton shower effects in associated γ + jet production at the LHC, Phys. Rev.D 100 (2019) 034028 [arXiv:1906.10552] [INSPIRE].

  16. [16]

    S.P. Baranov and A.V. Lipatov, Are there any challenges in the charmonia production and polarization at the LHC?, Phys. Rev.D 100 (2019) 114021 [arXiv:1906.07182] [INSPIRE].

  17. [17]

    S.P. Baranov and A.V. Lipatov, First estimates of the Bcwave function from the data on the Bcproduction cross section, Phys. Lett.B 785 (2018) 338 [arXiv:1805.05390] [INSPIRE].

  18. [18]

    S.P. Baranov, H. Jung, A.V. Lipatov and M.A. Malyshev, Associated production of Z bosons and b-jets at the LHC in the combined kT+ collinear QCD factorization approach, Eur. Phys. J.C 77 (2017) 772 [arXiv:1708.07079] [INSPIRE].

  19. [19]

    N.A. Abdulov, A.V. Lipatov and M.A. Malyshev, Inclusive Higgs boson production at the LHC in the kt-factorization approach, Phys. Rev.D 97 (2018) 054017 [arXiv:1708.04057] [INSPIRE].

  20. [20]

    A.V. Lipatov, M.A. Malyshev and N.P. Zotov, Phenomenology of kt-factorization for inclusive Higgs boson production at LHC, Phys. Lett.B 735 (2014) 79 [arXiv:1402.6481] [INSPIRE].

  21. [21]

    R. Islam, M. Kumar and V.S. Rawoot, kT-factorization approach to the Higgs boson production in ZZ* 4ℓ channel at the LHC, Eur. Phys. J.C 79 (2019) 181 [arXiv:1706.01402] [INSPIRE].

  22. [22]

    A. Szczurek, M. Luszczak and R. Maciula, Inclusive production of Higgs boson in the two-photon channel at the LHC within kt-factorization approach and with the Standard Model couplings, Phys. Rev.D 90 (2014) 094023 [arXiv:1407.4243] [INSPIRE].

  23. [23]

    H. Jung, M. Kraemer, A.V. Lipatov and N.P. Zotov, Investigation of beauty production and parton shower effects at LHC, Phys. Rev.D 85 (2012) 034035 [arXiv:1111.1942] [INSPIRE].

  24. [24]

    H. Jung, M. Kraemer, A.V. Lipatov and N.P. Zotov, Heavy Flavour Production at Tevatron and Parton Shower Effects, JHEP01 (2011) 085 [arXiv:1009.5067] [INSPIRE].

  25. [25]

    S. Dooling, F. Hautmann and H. Jung, Hadroproduction of electroweak gauge boson plus jets and TMD parton density functions, Phys. Lett.B 736 (2014) 293 [arXiv:1406.2994] [INSPIRE].

  26. [26]

    V.N. Gribov and L.N. Lipatov, Deep inelastic e p scattering in perturbation theory, Sov. J. Nucl. Phys.15 (1972) 438 [INSPIRE].

  27. [27]

    L.N. Lipatov, The parton model and perturbation theory, Sov. J. Nucl. Phys.20 (1975) 94 [INSPIRE].

  28. [28]

    G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys.B 126 (1977) 298 [INSPIRE].

  29. [29]

    Y.L. Dokshitzer, Calculation of the Structure Functions for Deep Inelastic Scattering and e+eAnnihilation by Perturbation Theory in Quantum Chromodynamics., Sov. Phys. JETP46 (1977) 641 [INSPIRE].

  30. [30]

    F. Hautmann, H. Jung, A. Lelek, V. Radescu and R. Zlebcik, Soft-gluon resolution scale in QCD evolution equations, Phys. Lett.B 772 (2017) 446 [arXiv:1704.01757] [INSPIRE].

  31. [31]

    F. Hautmann, H. Jung, A. Lelek, V. Radescu and R. Zlebcik, Collinear and TMD Quark and Gluon Densities from Parton Branching Solution of QCD Evolution Equations, JHEP01 (2018) 070 [arXiv:1708.03279] [INSPIRE].

  32. [32]

    M.A. Kimber, A.D. Martin and M.G. Ryskin, Unintegrated parton distributions, Phys. Rev.D 63 (2001) 114027 [hep-ph/0101348] [INSPIRE].

  33. [33]

    G. Watt, A.D. Martin and M.G. Ryskin, Unintegrated parton distributions and inclusive jet production at HERA, Eur. Phys. J.C 31 (2003) 73 [hep-ph/0306169] [INSPIRE].

  34. [34]

    A.D. Martin, M.G. Ryskin and G. Watt, NLO prescription for unintegrated parton distributions, Eur. Phys. J.C 66 (2010) 163 [arXiv:0909.5529] [INSPIRE].

  35. [35]

    NNPDF collaboration, A first determination of parton distributions with theoretical uncertainties, Eur. Phys. J.C (2019) 79:838 [arXiv:1905.04311] [INSPIRE].

  36. [36]

    T.-J. Hou et al., Progress in the CTEQ-TEA NNLO global QCD analysis, arXiv:1908.11394 [INSPIRE].

  37. [37]

    R. Maciula and A. Szczurek, Consistent treatment of charm production in higher-orders at tree-level within kT-factorization approach, Phys. Rev.D 100 (2019) 054001 [arXiv:1905.06697] [INSPIRE].

  38. [38]

    A.V. Lipatov, M.A. Malyshev and H. Jung, On relation between Parton Branching Approach and CCFM evolution, arXiv:1910.11224 [INSPIRE].

  39. [39]

    G. Cvetič, A.Yu. Illarionov, B.A. Kniehl and A.V. Kotikov, Small-x behavior of the structure function F2and its slope partial ln F2/∂ln(1/x) for ‘frozen’ and analytic strong-coupling constants, Phys. Lett.B 679 (2009) 350 [arXiv:0906.1925] [INSPIRE].

  40. [40]

    A.V. Kotikov and G. Parente, Small x behavior of parton distributions with soft initial conditions, Nucl. Phys.B 549 (1999) 242 [hep-ph/9807249] [INSPIRE].

  41. [41]

    A.Yu. Illarionov, A.V. Kotikov and G. Parente Bermudez, Small x behavior of parton distributions. A Study of higher twist effects, Phys. Part. Nucl.39 (2008) 307 [hep-ph/0402173] [INSPIRE].

  42. [42]

    L. Mankiewicz, A. Saalfeld and T. Weigl, On the analytical approximation to the GLAP evolution at small x and moderate Q2, Phys. Lett.B 393 (1997) 175 [hep-ph/9612297] [INSPIRE].

  43. [43]

    A. De Rujula, S.L. Glashow, H.D. Politzer, S.B. Treiman, F. Wilczek and A. Zee, Possible NonRegge Behavior of Electroproduction Structure Functions, Phys. Rev.D 10 (1974) 1649 [INSPIRE].

  44. [44]

    K. Golec-Biernat and A.M. Stasto, On the use of the KMR unintegrated parton distribution functions, Phys. Lett.B 781 (2018) 633 [arXiv:1803.06246] [INSPIRE].

  45. [45]

    H1 collaboration, A Measurement of the proton structure function F2(x, Q2) at low x and low Q2at HERA, Nucl. Phys.B 497 (1997) 3 [hep-ex/9703012] [INSPIRE].

  46. [46]

    H1 collaboration, Deep inelastic inclusive e p scattering at low x and a determination of αs, Eur. Phys. J.C 21 (2001) 33 [hep-ex/0012053] [INSPIRE].

  47. [47]

    H1 collaboration, On the rise of the proton structure function F2towards low x, Phys. Lett.B 520 (2001) 183 [hep-ex/0108035] [INSPIRE].

  48. [48]

    ZEUS collaboration, Measurement of the neutral current cross-section and F2structure function for deep inelastic e+p scattering at HERA, Eur. Phys. J.C 21 (2001) 443 [hep-ex/0105090] [INSPIRE].

  49. [49]

    H1 and ZEUS collaborations, Combined Measurement and QCD Analysis of the Inclusive e±p Scattering Cross Sections at HERA, JHEP01 (2010) 109 [arXiv:0911.0884] [INSPIRE].

  50. [50]

    A.M. Cooper-Sarkar, R.C.E. Devenish and A. De Roeck, Structure functions of the nucleon and their interpretation, Int. J. Mod. Phys.A 13 (1998) 3385 [hep-ph/9712301] [INSPIRE].

  51. [51]

    A.V. Kotikov, Deep inelastic scattering: Q2dependence of structure functions, Phys. Part. Nucl.38 (2007) 1 [Erratum ibid.38 (2007) 828] [INSPIRE].

  52. [52]

    R.D. Ball and S. Forte, A Direct test of perturbative QCD at small x, Phys. Lett.B 336 (1994) 77 [hep-ph/9406385] [INSPIRE].

  53. [53]

    A.V. Kotikov and B.G. Shaikhatdenov, Q2-evolution of parton densities at small x values. Charm contribution in the combined H1 and ZEUS F2data, Phys. Part. Nucl.48 (2017) 829 [arXiv:1606.07888] [INSPIRE].

  54. [54]

    A.V. Kotikov and B.G. Shaikhatdenov, Q2evolution of parton distributions at small values of x: Effective scale for combined H1 and ZEUS data on the structure function F2 , Phys. Atom. Nucl.78 (2015) 525 [arXiv:1402.4349] [INSPIRE].

  55. [55]

    A.V. Kotikov and B.G. Shaikhatdenov, Q2-evolution of parton densities at small x values. Combined H1 and ZEUS F2 data, Phys. Part. Nucl.44 (2013) 543 [arXiv:1212.4582] [INSPIRE].

  56. [56]

    A.Yu. Illarionov, B.A. Kniehl and A.V. Kotikov, Heavy-quark contributions to the ratio FL/F2at low x, Phys. Lett.B 663 (2008) 66 [arXiv:0801.1502] [INSPIRE].

  57. [57]

    A.Yu. Illarionov and A.V. Kotikov, \( {F}_2^c \)at low x, Phys. Atom. Nucl.75 (2012) 1234 [arXiv:1104.3895] [INSPIRE].

  58. [58]

    H1 and ZEUS collaborations, Combination and QCD Analysis of Charm Production Cross Section Measurements in Deep-Inelastic ep Scattering at HERA, Eur. Phys. J.C 73 (2013) 2311 [arXiv:1211.1182] [INSPIRE].

  59. [59]

    A.J. Buras, Asymptotic Freedom in Deep Inelastic Processes in the Leading Order and Beyond, Rev. Mod. Phys.52 (1980) 199 [INSPIRE].

  60. [60]

    A.V. Kotikov, On the behavior of DIS structure function ratio R(x, Q2) at small x, Phys. Lett.B 338 (1994) 349 [INSPIRE].

  61. [61]

    Y.L. Dokshitzer and D.V. Shirkov, On Exact account of heavy quark thresholds in hard processes, Z. Phys.C 67 (1995) 449 [INSPIRE].

  62. [62]

    S.J. Brodsky, V.S. Fadin, V.T. Kim, L.N. Lipatov and G.B. Pivovarov, The QCD Pomeron with optimal renormalization, JETP Lett.70 (1999) 155 [hep-ph/9901229] [INSPIRE].

  63. [63]

    Small x collaboration, Small x phenomenology: Summary and status, Eur. Phys. J.C 25 (2002) 77 [hep-ph/0204115] [INSPIRE].

  64. [64]

    B. Badelek, J. Kwiecinski and A. Stasto, A Model for FLand R = FL/FTat low x and low Q2, Z. Phys.C 74 (1997) 297 [hep-ph/9603230] [INSPIRE].

  65. [65]

    D.V. Shirkov and I.L. Solovtsov, Analytic model for the QCD running coupling with universal αs (0) value, Phys. Rev. Lett.79 (1997) 1209 [hep-ph/9704333] [INSPIRE].

  66. [66]

    I.L. Solovtsov and D.V. Shirkov, Analytic approach in quantum chromodynamics, Theor. Math. Phys.120 (1999) 1220 [hep-ph/9909305] [INSPIRE].

  67. [67]

    G. Cvetič and C. Valenzuela, Analytic QCD: A Short review, Braz. J. Phys.38 (2008) 371 [arXiv:0804.0872] [INSPIRE].

  68. [68]

    A.P. Bakulev, Global Fractional Analytic Perturbation Theory in QCD with Selected Applications, Phys. Part. Nucl.40 (2009) 715 [arXiv:0805.0829] [INSPIRE].

  69. [69]

    N.G. Stefanis, Taming Landau singularities in QCD perturbation theory: The Analytic approach, Phys. Part. Nucl.44 (2013) 494 [arXiv:0902.4805] [INSPIRE].

  70. [70]

    D.J. Gross, How to Test Scaling in Asymptotically Free Theories, Phys. Rev. Lett.32 (1974) 1071 [INSPIRE].

  71. [71]

    D.J. Gross and S.B. Treiman, Hadronic Form-Factors in Asymptotically Free Field Theories, Phys. Rev. Lett.32 (1974) 1145 [INSPIRE].

  72. [72]

    C. Lopez and F.J. Yndurain, Behavior of Deep Inelastic Structure Functions Near Physical Region Endpoints From QCD, Nucl. Phys.B 171 (1980) 231 [INSPIRE].

  73. [73]

    C. Lopez and F.J. Yndurain, Behavior at x = 0, 1, Sum Rules and Parametrizations for Structure Functions Beyond the Leading Order, Nucl. Phys.B 183 (1981) 157 [INSPIRE].

  74. [74]

    A.V. Kotikov, B.G. Shaikhatdenov and P. Zhang, Antishadowing in the rescaling model at x ∼ 0.1, arXiv:1811.05615 [INSPIRE].

  75. [75]

    A.V. Kotikov, B.G. Shaikhatdenov and P. Zhang, Application of the rescaling model at small Bjorken x values, Phys. Rev.D 96 (2017) 114002 [arXiv:1706.01849] [INSPIRE].

  76. [76]

    A.Yu. Illarionov, A.V. Kotikov, S.S. Parzycki and D.V. Peshekhonov, New type of parametrizations for parton distributions, Phys. Rev.D 83 (2011) 034014 [arXiv:1005.3772] [INSPIRE].

  77. [77]

    V.A. Matveev, R.M. Muradian and A.N. Tavkhelidze, Automodellism in the large-angle elastic scattering and structure of hadrons, Lett. Nuovo Cim.7 (1973) 719 [INSPIRE].

  78. [78]

    S.J. Brodsky and G.R. Farrar, Scaling Laws at Large Transverse Momentum, Phys. Rev. Lett.31 (1973) 1153 [INSPIRE].

  79. [79]

    S.J. Brodsky, J.R. Ellis, E. Gardi, M. Karliner and M. Samuel, Pade approximants, optimal renormalization scales and momentum flow in Feynman diagrams, Phys. Rev.D 56 (1997) 6980 [hep-ph/9706467] [INSPIRE].

  80. [80]

    P. Jimenez-Delgado and E. Reya, Delineating parton distributions and the strong coupling, Phys. Rev.D 89 (2014) 074049 [arXiv:1403.1852] [INSPIRE].

  81. [81]

    S. Alekhin, J. Blümlein, S. Moch and R. Placakyte, Parton distribution functions, αsand heavy-quark masses for LHC Run II, Phys. Rev.D 96 (2017) 014011 [arXiv:1701.05838] [INSPIRE].

  82. [82]

    A.V. Kotikov, V.G. Krivokhizhin and B.G. Shaikhatdenov, Gottfried sum rule in QCD NS analysis of DIS fixed target data, Phys. Atom. Nucl.81 (2018) 244 [arXiv:1612.06412] [INSPIRE].

  83. [83]

    V.G. Krivokhizhin and A.V. Kotikov, A systematic study of QCD coupling constant from deep-inelastic measurements, Phys. Atom. Nucl.68 (2005) 1873 [INSPIRE].

  84. [84]

    V.G. Krivokhizhin and A.V. Kotikov, Functions of the nucleon structure and determination of the strong coupling constant, Phys. Part. Nucl.40 (2009) 1059 [INSPIRE].

  85. [85]

    B.G. Shaikhatdenov, A.V. Kotikov, V.G. Krivokhizhin and G. Parente, QCD coupling constant at NNLO from DIS data, Phys. Rev.D 81 (2010) 034008 [Erratum ibid.D 81 (2010) 079904] [arXiv:0912.4672] [INSPIRE].

  86. [86]

    A.V. Kotikov, V.G. Krivokhizhin and B.G. Shaikhatdenov, Analytic and ‘frozen’ QCD coupling constants up to NNLO from DIS data, Phys. Atom. Nucl.75 (2012) 507 [arXiv:1008.0545] [INSPIRE].

  87. [87]

    CMS collaboration, Inclusive b-jet production in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP04 (2012) 084 [arXiv:1202.4617] [INSPIRE].

  88. [88]

    ATLAS collaboration, Measurement of the inclusive and dijet cross-sections of bjets in pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, Eur. Phys. J.C 71 (2011) 1846 [arXiv:1109.6833] [INSPIRE].

  89. [89]

    L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Uncertainties on αS in the MMHT2014 global PDF analysis and implications for SM predictions, Eur. Phys. J.C 75 (2015) 435 [arXiv:1506.05682] [INSPIRE].

  90. [90]

    A.V. Kotikov, A.V. Lipatov, G. Parente and N.P. Zotov, The Contribution of off-shell gluons to the structure functions \( {F}_2^c \)and \( {F}_L^c \)and the unintegrated gluon distributions, Eur. Phys. J.C 26 (2002) 51 [hep-ph/0107135] [INSPIRE].

  91. [91]

    A.V. Kotikov, A.V. Lipatov and N.P. Zotov, The Contribution of off-shell gluons to the longitudinal structure function FL, Eur. Phys. J.C 27 (2003) 219 [hep-ph/0207226] [INSPIRE].

  92. [92]

    Particle Data Group collaboration, Review of Particle Physics, Phys. Rev.D 98 (2018) 030001 [INSPIRE].

  93. [93]

    A.V. Lipatov, M.A. Malyshev and S.P. Baranov, Particle Event Generator: A Simple-in-Use System PEGASUS version 1.0, arXiv:1912.04204 [INSPIRE].

  94. [94]

    https://theory.sinp.msu.ru/doku.php/pegasus/news.

  95. [95]

    J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A Phenomenological Profile of the Higgs Boson, Nucl. Phys.B 106 (1976) 292 [INSPIRE].

  96. [96]

    M.A. Shifman, A.I. Vainshtein, M.B. Voloshin and V.I. Zakharov, Low-Energy Theorems for Higgs Boson Couplings to Photons, Sov. J. Nucl. Phys.30 (1979) 711 [INSPIRE].

  97. [97]

    CMS collaboration, Measurement of inclusive and differential Higgs boson production cross sections in the diphoton decay channel in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP01 (2019) 183 [arXiv:1807.03825] [INSPIRE].

  98. [98]

    ATLAS collaboration, Measurements of Higgs boson properties in the diphoton decay channel with 36 fb1of pp collision data at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev.D 98 (2018) 052005 [arXiv:1802.04146] [INSPIRE].

  99. [99]

    ZEUS collaboration, Measurement of beauty and charm production in deep inelastic scattering at HERA and measurement of the beauty-quark mass, JHEP09 (2014) 127 [arXiv:1405.6915] [INSPIRE].

  100. [100]

    H1 collaboration, Measurement of DMeson Production and Determination of \( {F}_2^{c\overline{c}} \)at low Q2 in Deep-Inelastic Scattering at HERA, Eur. Phys. J.C 71 (2011) 1769 [Erratum ibid.C 72 (2012) 2252] [arXiv:1106.1028] [INSPIRE].

  101. [101]

    H1 collaboration, Measurement of the Charm and Beauty Structure Functions using the H1 Vertex Detector at HERA, Eur. Phys. J.C 65 (2010) 89 [arXiv:0907.2643] [INSPIRE].

  102. [102]

    H1 and ZEUS collaborations, Combination and QCD analysis of charm and beauty production cross-section measurements in deep inelastic ep scattering at HERA, Eur. Phys. J.C 78 (2018) 473 [arXiv:1804.01019] [INSPIRE].

  103. [103]

    A. van Hameren, A note on QED gauge invariance of off-shell amplitudes, arXiv:1902.01791 [INSPIRE].

  104. [104]

    M. Nefedov and V. Saleev, On the one-loop calculations with Reggeized quarks, Mod. Phys. Lett.A 32 (2017) 1750207 [arXiv:1709.06246] [INSPIRE].

  105. [105]

    F. Caporale, F.G. Celiberto, G. Chachamis, D. Gordo Gomez and A. Sabio Vera, Inclusive three- and four-jet production in multi-Regge kinematics at the LHC, AIP Conf. Proc.1819 (2017) 060009 [arXiv:1611.04813] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Correspondence to A. V. Lipatov.

Additional information

ArXiv ePrint: 1911.01445

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kotikov, A.V., Lipatov, A.V., Shaikhatdenov, B.G. et al. Transverse momentum dependent parton densities in a proton from the generalized DAS approach. J. High Energ. Phys. 2020, 28 (2020). https://doi.org/10.1007/JHEP02(2020)028

Download citation

Keywords

  • QCD Phenomenology