Conformal invariance of the one-loop all-plus helicity scattering amplitudes

Abstract

The massless QCD Lagrangian is conformally invariant and, as a consequence, so are the tree-level scattering amplitudes. However, the implications of this powerful symmetry at loop level are only beginning to be explored systematically. Even for finite loop amplitudes, the way conformal symmetry manifests itself may be subtle, e.g. in the form of anomalous conformal Ward identities. As they are finite and rational, the one-loop all-plus and single-minus amplitudes are a natural first step towards understanding the conformal properties of Yang-Mills theory at loop level. Remarkably, we find that the one-loop all-plus amplitudes are conformally invariant, whereas the single-minus are not. Moreover, we present a formula for the one-loop all-plus amplitudes where the symmetry is manifest term by term. Surprisingly, each term transforms covariantly under directional dual conformal variations. We prove the formula directly using recursive techniques, and check that it has the correct physical factorisations.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys. B 828 (2010) 317 [arXiv:0807.1095] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  2. [2]

    J.C. Collins, D.E. Soper and G.F. Sterman, Factorization of Hard Processes in QCD, Adv. Ser. Direct. High Energy Phys. 5 (1989) 1 [hep-ph/0409313] [INSPIRE].

  3. [3]

    V.M. Braun, G.P. Korchemsky and D. Müller, The uses of conformal symmetry in QCD, Prog. Part. Nucl. Phys. 51 (2003) 311 [hep-ph/0306057] [INSPIRE].

  4. [4]

    V.M. Braun, A.N. Manashov, S. Moch and M. Strohmaier, Three-loop evolution equation for flavor-nonsinglet operators in off-forward kinematics, JHEP 06 (2017) 037 [arXiv:1703.09532] [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    T. Bargheer, N. Beisert, W. Galleas, F. Loebbert and T. McLoughlin, Exacting N = 4 Superconformal Symmetry, JHEP 11 (2009) 056 [arXiv:0905.3738] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  6. [6]

    G.P. Korchemsky and E. Sokatchev, Symmetries and analytic properties of scattering amplitudes in N = 4 SYM theory, Nucl. Phys. B 832 (2010) 1 [arXiv:0906.1737] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  7. [7]

    N. Beisert, J. Henn, T. McLoughlin and J. Plefka, One-Loop Superconformal and Yangian Symmetries of Scattering Amplitudes in N = 4 Super Yang-Mills, JHEP 04 (2010) 085 [arXiv:1002.1733] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  8. [8]

    D. Chicherin and E. Sokatchev, Conformal anomaly of generalized form factors and finite loop integrals, JHEP 04 (2018) 082 [arXiv:1709.03511] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  9. [9]

    D. Chicherin, J.M. Henn and E. Sokatchev, Scattering Amplitudes from Superconformal Ward Identities, Phys. Rev. Lett. 121 (2018) 021602 [arXiv:1804.03571] [INSPIRE].

  10. [10]

    D. Chicherin, J.M. Henn and E. Sokatchev, Amplitudes from anomalous superconformal symmetry, JHEP 01 (2019) 179 [arXiv:1811.02560] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. [11]

    In collaboration, Conformal Symmetry and Feynman Integrals, PoS(LL2018)037 [arXiv:1807.06020] [INSPIRE].

  12. [12]

    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A.B. Goncharov, A. Postnikov and J. Trnka, Grassmannian Geometry of Scattering Amplitudes, Cambridge University Press, (2016).

  13. [13]

    F. Cachazo, Sharpening The Leading Singularity, arXiv:0803.1988 [INSPIRE].

  14. [14]

    D.C. Dunbar, G.R. Jehu and W.B. Perkins, The two-loop n-point all-plus helicity amplitude, Phys. Rev. D 93 (2016) 125006 [arXiv:1604.06631] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  15. [15]

    S. Badger et al., Analytic form of the full two-loop five-gluon all-plus helicity amplitude, Phys. Rev. Lett. 123 (2019) 071601 [arXiv:1905.03733] [INSPIRE].

  16. [16]

    D.C. Dunbar, J.H. Godwin, W.B. Perkins and J.M.W. Strong, Color Dressed Unitarity and Recursion for Yang-Mills Two-Loop All-Plus Amplitudes, Phys. Rev. D 101 (2020) 016009 [arXiv:1911.06547] [INSPIRE].

  17. [17]

    Z. Bern and D.A. Kosower, The computation of loop amplitudes in gauge theories, Nucl. Phys. B 379 (1992) 451 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. [18]

    Z. Bern, L.J. Dixon and D.A. Kosower, One loop corrections to five gluon amplitudes, Phys. Rev. Lett. 70 (1993) 2677 [hep-ph/9302280] [INSPIRE].

  19. [19]

    Z. Bern, L.J. Dixon and D.A. Kosower, New QCD results from string theory, in International Conference on Strings 93 Berkeley, California, May 24–29, 1993, pp. 0190–204, hep-th/9311026 [INSPIRE].

  20. [20]

    G. Mahlon, Multi-gluon helicity amplitudes involving a quark loop, Phys. Rev. D 49 (1994) 4438 [hep-ph/9312276] [INSPIRE].

  21. [21]

    Z. Bern, G. Chalmers, L.J. Dixon and D.A. Kosower, One loop N gluon amplitudes with maximal helicity violation via collinear limits, Phys. Rev. Lett. 72 (1994) 2134 [hep-ph/9312333] [INSPIRE].

  22. [22]

    Z. Bern and D.A. Kosower, Color decomposition of one loop amplitudes in gauge theories, Nucl. Phys. B 362 (1991) 389 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  23. [23]

    S.J. Parke and T.R. Taylor, An Amplitude for n Gluon Scattering, Phys. Rev. Lett. 56 (1986) 2459 [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    F.A. Berends and W.T. Giele, Recursive Calculations for Processes with n Gluons, Nucl. Phys. B 306 (1988) 759 [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    M.L. Mangano and S.J. Parke, Quark-Gluon Amplitudes in the Dual Expansion, Nucl. Phys. B 299 (1988) 673 [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    C.R. Mafra and O. Schlotterer, The Structure of n-Point One-Loop Open Superstring Amplitudes, JHEP 08 (2014) 099 [arXiv:1203.6215] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    S. He, R. Monteiro and O. Schlotterer, String-inspired BCJ numerators for one-loop MHV amplitudes, JHEP 01 (2016) 171 [arXiv:1507.06288] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  28. [28]

    E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys. 252 (2004) 189 [hep-th/0312171] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  29. [29]

    F. Cachazo, P. Svrček and E. Witten, Gauge theory amplitudes in twistor space and holomorphic anomaly, JHEP 10 (2004) 077 [hep-th/0409245] [INSPIRE].

  30. [30]

    E. Wang, Conformal Properties of All-Plus Scattering Amplitudes, BSc Thesis, LMU Munich, BSc. thesis, LMU Munich (2019), https://www.researchgate.net/publication/337338833 Conformal Properties of All-Plus Scattering Amplitudes.

  31. [31]

    J.M. Drummond, J.M. Henn and J. Plefka, Yangian symmetry of scattering amplitudes in N = 4 super Yang-Mills theory, JHEP 05 (2009) 046 [arXiv:0902.2987] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  32. [32]

    Z. Bern, M. Enciso, H. Ita and M. Zeng, Dual Conformal Symmetry, Integration-by-Parts Reduction, Differential Equations and the Nonplanar Sector, Phys. Rev. D 96 (2017) 096017 [arXiv:1709.06055] [INSPIRE].

  33. [33]

    Z. Bern, M. Enciso, C.-H. Shen and M. Zeng, Dual Conformal Structure Beyond the Planar Limit, Phys. Rev. Lett. 121 (2018) 121603 [arXiv:1806.06509] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    D. Chicherin, J.M. Henn and E. Sokatchev, Implications of nonplanar dual conformal symmetry, JHEP 09 (2018) 012 [arXiv:1807.06321] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  35. [35]

    R. Ben-Israel, A.G. Tumanov and A. Sever, Scattering amplitudes — Wilson loops duality for the first non-planar correction, JHEP 08 (2018) 122 [arXiv:1802.09395] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  36. [36]

    S. Weinberg, Photons and Gravitons in S-Matrix Theory: Derivation of Charge Conservation and Equality of Gravitational and Inertial Mass, Phys. Rev. 135 (1964) B1049 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  37. [37]

    F.E. Low, Bremsstrahlung of very low-energy quanta in elementary particle collisions, Phys. Rev. 110 (1958) 974 [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    M.L. Mangano and S.J. Parke, Multiparton amplitudes in gauge theories, Phys. Rept. 200 (1991) 301 [hep-th/0509223] [INSPIRE].

    ADS  Article  Google Scholar 

  39. [39]

    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [INSPIRE].

  40. [40]

    S. Stieberger and T.R. Taylor, Subleading terms in the collinear limit of Yang-Mills amplitudes, Phys. Lett. B 750 (2015) 587 [arXiv:1508.01116] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  41. [41]

    R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  42. [42]

    Z. Bern, L.J. Dixon and D.A. Kosower, On-shell recurrence relations for one-loop QCD amplitudes, Phys. Rev. D 71 (2005) 105013 [hep-th/0501240] [INSPIRE].

    ADS  Google Scholar 

  43. [43]

    L.J. Mason and D. Skinner, Scattering Amplitudes and BCFW Recursion in Twistor Space, JHEP 01 (2010) 064 [arXiv:0903.2083] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  44. [44]

    C.F. Berger, Z. Bern, L.J. Dixon, D. Forde and D.A. Kosower, Bootstrapping One-Loop QCD Amplitudes with General Helicities, Phys. Rev. D 74 (2006) 036009 [hep-ph/0604195] [INSPIRE].

  45. [45]

    D.C. Dunbar, J.H. Ettle and W.B. Perkins, Augmented Recursion For One-loop Amplitudes, Nucl. Phys. Proc. Suppl. 205–206 (2010) 74 [arXiv:1011.0559] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  46. [46]

    S. He, Y.-t. Huang and C. Wen, Loop Corrections to Soft Theorems in Gauge Theories and Gravity, JHEP 12 (2014) 115 [arXiv:1405.1410] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Simone Zoia.

Additional information

ArXiv ePrint: 1911.12142

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Henn, J., Power, B. & Zoia, S. Conformal invariance of the one-loop all-plus helicity scattering amplitudes. J. High Energ. Phys. 2020, 19 (2020). https://doi.org/10.1007/JHEP02(2020)019

Download citation

Keywords

  • Conformal and W Symmetry
  • Conformal Field Theory
  • Scattering Amplitudes
  • Perturbative QCD