Gauge-flavon unification

Abstract

In this paper we propose the idea that flavons can emerge from extra dimensional gauge fields, referred to as gauge-flavon unification (GFU) analogous to gauge-Higgs unification (GHU). We assume that there is a gauged family symmetry in extra dimensions and that the flavons are the extra dimensional components of the gauge field. This provides a simple mechanism to align the VEVs of the flavons through a combination of Wilson lines and orbifold symmetry breaking. We present some simple 5d examples of GFU based on SO(3) and SU(4) gauged family symmetry, the latter case yielding SU(3) × U(1) gauged family symmetry in 4d, broken by triplet and antitriplet flavons, with effective couplings to fermions. We also present a general formalism for Wilson lines and orbifolds, in any number of dimensions, including non-commutative aspects Wilson lines, which may be useful for aligning additional flavons as required for realistic models.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    Y. Hosotani, Dynamical mass generation by compact extra dimensions, Phys. Lett. B 126 (1983) 309 [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    Y. Hosotani, Dynamical gauge symmetry breaking as the Casimir effect, Phys. Lett. B 129 (1983) 193 [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    P. Candelas, G.T. Horowitz, A. Strominger and E. Witten, Vacuum configurations for superstrings, Nucl. Phys. B 258 (1985) 46 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. [4]

    E. Witten, Symmetry breaking patterns in superstring models, Nucl. Phys. B 258 (1985) 75 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. [5]

    J.P. Derendinger, L.E. Ibáñez and H.P. Nilles, On the low-energy limit of superstring theories, Nucl. Phys. B 267 (1986) 365 [INSPIRE].

  6. [6]

    B.R. Greene, K.H. Kirklin, P.J. Miron and G.G. Ross, A three generation superstring model. 1. Compactification and discrete symmetries, Nucl. Phys. B 278 (1986) 667 [INSPIRE].

  7. [7]

    B.R. Greene, K.H. Kirklin, P.J. Miron and G.G. Ross, A three generation superstring model. 2. Symmetry breaking and the low-energy theory, Nucl. Phys. B 292 (1987) 606 [INSPIRE].

  8. [8]

    S. Ferrara, C. Kounnas and M. Porrati, N = 1 superstrings with spontaneously broken symmetries, Phys. Lett. B 206 (1988) 25 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  9. [9]

    A. Font, L.E. Ibáñez, F. Quevedo and A. Sierra, The construction of ‘realistic’ four-dimensional strings through orbifolds, Nucl. Phys. B 331 (1990) 421 [INSPIRE].

  10. [10]

    A.E. Faraggi, Proton stability in superstring derived models, Nucl. Phys. B 428 (1994) 111 [hep-ph/9403312] [INSPIRE].

  11. [11]

    A.E. Faraggi, Local discrete symmetries from superstring derived models, Phys. Lett. B 398 (1997) 88 [hep-ph/9611219] [INSPIRE].

  12. [12]

    J.R. Ellis, A.E. Faraggi and D.V. Nanopoulos, M theory model building and proton stability, Phys. Lett. B 419 (1998) 123 [hep-th/9709049] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  13. [13]

    Y. Sakamura, Effective theories of gauge-Higgs unification models in warped spacetime, Phys. Rev. D 76 (2007) 065002 [arXiv:0705.1334] [INSPIRE].

  14. [14]

    A.D. Medina, N.R. Shah and C.E.M. Wagner, Gauge-Higgs unification and radiative electroweak symmetry breaking in warped extra dimensions, Phys. Rev. D 76 (2007) 095010 [arXiv:0706.1281] [INSPIRE].

  15. [15]

    L.J. Hall, Y. Nomura and D. Tucker-Smith, Gauge Higgs unification in higher dimensions, Nucl. Phys. B 639 (2002) 307 [hep-ph/0107331] [INSPIRE].

  16. [16]

    I. Gogoladze, Y. Mimura and S. Nandi, Gauge Higgs unification on the left right model, Phys. Lett. B 560 (2003) 204 [hep-ph/0301014] [INSPIRE].

  17. [17]

    Y. Hosotani, S. Noda, Y. Sakamura and S. Shimasaki, Gauge-Higgs unification and quark-lepton phenomenology in the warped spacetime, Phys. Rev. D 73 (2006) 096006 [hep-ph/0601241] [INSPIRE].

  18. [18]

    C.A. Scrucca, M. Serone, L. Silvestrini and A. Wulzer, Gauge Higgs unification in orbifold models, JHEP 02 (2004) 049 [hep-th/0312267] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. [19]

    I. Antoniadis, K. Benakli and M. Quirós, Finite Higgs mass without supersymmetry, New J. Phys. 3 (2001) 20 [hep-th/0108005] [INSPIRE].

  20. [20]

    G. Panico, M. Serone and A. Wulzer, A model of electroweak symmetry breaking from a fifth dimension, Nucl. Phys. B 739 (2006) 186 [hep-ph/0510373] [INSPIRE].

  21. [21]

    Y. Adachi and N. Maru, Revisiting electroweak symmetry breaking and the Higgs boson mass in gauge-Higgs unification, Phys. Rev. D 98 (2018) 015022 [arXiv:1804.06012] [INSPIRE].

  22. [22]

    S.F. King and C. Luhn, Neutrino mass and mixing with discrete symmetry, Rept. Prog. Phys. 76 (2013) 056201 [arXiv:1301.1340] [INSPIRE].

  23. [23]

    L.J. Hall, H. Murayama and Y. Nomura, Wilson lines and symmetry breaking on orbifolds, Nucl. Phys. B 645 (2002) 85 [hep-th/0107245] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  24. [24]

    F.J. De Anda, S.F. King, E. Perdomo and P.K.S. Vaudrevange, Flavon alignments from orbifolding: SU(5) × SU(3) model with \( {\mathbbm{T}}^6 \)/∆(54), JHEP 12 (2019) 055 [arXiv:1910.04175] [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    A. Hebecker and M. Ratz, Group theoretical aspects of orbifold and conifold GUTs, Nucl. Phys. B 670 (2003) 3 [hep-ph/0306049] [INSPIRE].

  26. [26]

    A. Hebecker and J. March-Russell, The structure of GUT breaking by orbifolding, Nucl. Phys. B 625 (2002) 128 [hep-ph/0107039] [INSPIRE].

  27. [27]

    Y. Hosotani, S. Noda and K. Takenaga, Dynamical gauge-Higgs unification in the electroweak theory, Phys. Lett. B 607 (2005) 276 [hep-ph/0410193] [INSPIRE].

  28. [28]

    Y. Hosotani, S. Noda and K. Takenaga, Dynamical gauge symmetry breaking and mass generation on the orbifold T2/2, Phys. Rev. D 69 (2004) 125014 [hep-ph/0403106] [INSPIRE].

  29. [29]

    N. Haba, Y. Hosotani, Y. Kawamura and T. Yamashita, Dynamical symmetry breaking in gauge Higgs unification on orbifold, Phys. Rev. D 70 (2004) 015010 [hep-ph/0401183] [INSPIRE].

  30. [30]

    N. Haba, M. Harada, Y. Hosotani and Y. Kawamura, Dynamical rearrangement of gauge symmetry on the orbifold S1/Z2, Nucl. Phys. B 657 (2003) 169 [Erratum ibid. B 669 (2003) 381] [hep-ph/0212035] [INSPIRE].

  31. [31]

    S. Förste, H.P. Nilles and A. Wingerter, Geometry of rank reduction, Phys. Rev. D 72 (2005) 026001 [hep-th/0504117] [INSPIRE].

  32. [32]

    Z. Guralnik and J. Troost, Aspects of gauge theory on commutative and noncommutative tori, JHEP 05 (2001) 022 [hep-th/0103168] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    F.J. de Anda and S.F. King, SU(3) × SO(10) in 6d, JHEP 10 (2018) 128 [arXiv:1807.07078] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    K. Saraikin, Comments on the Morita equivalence, J. Exp. Theor. Phys. 91 (2000) 653 [Zh. Eksp. Teor. Fiz. 118 (2000) 755] [hep-th/0005138] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Francisco J. de Anda.

Additional information

ArXiv ePrint: 1911.11781

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aranda, A., de Anda, F.J. & King, S.F. Gauge-flavon unification. J. High Energ. Phys. 2020, 12 (2020). https://doi.org/10.1007/JHEP02(2020)012

Download citation

Keywords

  • Field Theories in Higher Dimensions
  • Quark Masses and SM Parameters
  • Beyond Standard Model
  • Gauge Symmetry