Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Gauge-flavon unification


In this paper we propose the idea that flavons can emerge from extra dimensional gauge fields, referred to as gauge-flavon unification (GFU) analogous to gauge-Higgs unification (GHU). We assume that there is a gauged family symmetry in extra dimensions and that the flavons are the extra dimensional components of the gauge field. This provides a simple mechanism to align the VEVs of the flavons through a combination of Wilson lines and orbifold symmetry breaking. We present some simple 5d examples of GFU based on SO(3) and SU(4) gauged family symmetry, the latter case yielding SU(3) × U(1) gauged family symmetry in 4d, broken by triplet and antitriplet flavons, with effective couplings to fermions. We also present a general formalism for Wilson lines and orbifolds, in any number of dimensions, including non-commutative aspects Wilson lines, which may be useful for aligning additional flavons as required for realistic models.

A preprint version of the article is available at ArXiv.


  1. [1]

    Y. Hosotani, Dynamical mass generation by compact extra dimensions, Phys. Lett.B 126 (1983) 309 [INSPIRE].

  2. [2]

    Y. Hosotani, Dynamical gauge symmetry breaking as the Casimir effect, Phys. Lett.B 129 (1983) 193 [INSPIRE].

  3. [3]

    P. Candelas, G.T. Horowitz, A. Strominger and E. Witten, Vacuum configurations for superstrings, Nucl. Phys.B 258 (1985) 46 [INSPIRE].

  4. [4]

    E. Witten, Symmetry breaking patterns in superstring models, Nucl. Phys.B 258 (1985) 75 [INSPIRE].

  5. [5]

    J.P. Derendinger, L.E. Ibáñez and H.P. Nilles, On the low-energy limit of superstring theories, Nucl. Phys.B 267 (1986) 365 [INSPIRE].

  6. [6]

    B.R. Greene, K.H. Kirklin, P.J. Miron and G.G. Ross, A three generation superstring model. 1. Compactification and discrete symmetries, Nucl. Phys.B 278 (1986) 667 [INSPIRE].

  7. [7]

    B.R. Greene, K.H. Kirklin, P.J. Miron and G.G. Ross, A three generation superstring model. 2. Symmetry breaking and the low-energy theory, Nucl. Phys.B 292 (1987) 606 [INSPIRE].

  8. [8]

    S. Ferrara, C. Kounnas and M. Porrati, N = 1 superstrings with spontaneously broken symmetries, Phys. Lett.B 206 (1988) 25 [INSPIRE].

  9. [9]

    A. Font, L.E. Ibáñez, F. Quevedo and A. Sierra, The construction of ‘realistic’ four-dimensional strings through orbifolds, Nucl. Phys.B 331 (1990) 421 [INSPIRE].

  10. [10]

    A.E. Faraggi, Proton stability in superstring derived models, Nucl. Phys.B 428 (1994) 111 [hep-ph/9403312] [INSPIRE].

  11. [11]

    A.E. Faraggi, Local discrete symmetries from superstring derived models, Phys. Lett.B 398 (1997) 88 [hep-ph/9611219] [INSPIRE].

  12. [12]

    J.R. Ellis, A.E. Faraggi and D.V. Nanopoulos, M theory model building and proton stability, Phys. Lett.B 419 (1998) 123 [hep-th/9709049] [INSPIRE].

  13. [13]

    Y. Sakamura, Effective theories of gauge-Higgs unification models in warped spacetime, Phys. Rev.D 76 (2007) 065002 [arXiv:0705.1334] [INSPIRE].

  14. [14]

    A.D. Medina, N.R. Shah and C.E.M. Wagner, Gauge-Higgs unification and radiative electroweak symmetry breaking in warped extra dimensions, Phys. Rev.D 76 (2007) 095010 [arXiv:0706.1281] [INSPIRE].

  15. [15]

    L.J. Hall, Y. Nomura and D. Tucker-Smith, Gauge Higgs unification in higher dimensions, Nucl. Phys.B 639 (2002) 307 [hep-ph/0107331] [INSPIRE].

  16. [16]

    I. Gogoladze, Y. Mimura and S. Nandi, Gauge Higgs unification on the left right model, Phys. Lett.B 560 (2003) 204 [hep-ph/0301014] [INSPIRE].

  17. [17]

    Y. Hosotani, S. Noda, Y. Sakamura and S. Shimasaki, Gauge-Higgs unification and quark-lepton phenomenology in the warped spacetime, Phys. Rev.D 73 (2006) 096006 [hep-ph/0601241] [INSPIRE].

  18. [18]

    C.A. Scrucca, M. Serone, L. Silvestrini and A. Wulzer, Gauge Higgs unification in orbifold models, JHEP02 (2004) 049 [hep-th/0312267] [INSPIRE].

  19. [19]

    I. Antoniadis, K. Benakli and M. Quirós, Finite Higgs mass without supersymmetry, New J. Phys.3 (2001) 20 [hep-th/0108005] [INSPIRE].

  20. [20]

    G. Panico, M. Serone and A. Wulzer, A model of electroweak symmetry breaking from a fifth dimension, Nucl. Phys.B 739 (2006) 186 [hep-ph/0510373] [INSPIRE].

  21. [21]

    Y. Adachi and N. Maru, Revisiting electroweak symmetry breaking and the Higgs boson mass in gauge-Higgs unification, Phys. Rev.D 98 (2018) 015022 [arXiv:1804.06012] [INSPIRE].

  22. [22]

    S.F. King and C. Luhn, Neutrino mass and mixing with discrete symmetry, Rept. Prog. Phys.76 (2013) 056201 [arXiv:1301.1340] [INSPIRE].

  23. [23]

    L.J. Hall, H. Murayama and Y. Nomura, Wilson lines and symmetry breaking on orbifolds, Nucl. Phys.B 645 (2002) 85 [hep-th/0107245] [INSPIRE].

  24. [24]

    F.J. De Anda, S.F. King, E. Perdomo and P.K.S. Vaudrevange, Flavon alignments from orbifolding: SU(5) × SU(3) model with \( {\mathbbm{T}}^6 \)/∆(54), JHEP12 (2019) 055 [arXiv:1910.04175] [INSPIRE].

  25. [25]

    A. Hebecker and M. Ratz, Group theoretical aspects of orbifold and conifold GUTs, Nucl. Phys.B 670 (2003) 3 [hep-ph/0306049] [INSPIRE].

  26. [26]

    A. Hebecker and J. March-Russell, The structure of GUT breaking by orbifolding, Nucl. Phys.B 625 (2002) 128 [hep-ph/0107039] [INSPIRE].

  27. [27]

    Y. Hosotani, S. Noda and K. Takenaga, Dynamical gauge-Higgs unification in the electroweak theory, Phys. Lett.B 607 (2005) 276 [hep-ph/0410193] [INSPIRE].

  28. [28]

    Y. Hosotani, S. Noda and K. Takenaga, Dynamical gauge symmetry breaking and mass generation on the orbifold T2/2, Phys. Rev.D 69 (2004) 125014 [hep-ph/0403106] [INSPIRE].

  29. [29]

    N. Haba, Y. Hosotani, Y. Kawamura and T. Yamashita, Dynamical symmetry breaking in gauge Higgs unification on orbifold, Phys. Rev.D 70 (2004) 015010 [hep-ph/0401183] [INSPIRE].

  30. [30]

    N. Haba, M. Harada, Y. Hosotani and Y. Kawamura, Dynamical rearrangement of gauge symmetry on the orbifold S1/Z2, Nucl. Phys.B 657 (2003) 169 [Erratum ibid.B 669 (2003) 381] [hep-ph/0212035] [INSPIRE].

  31. [31]

    S. Förste, H.P. Nilles and A. Wingerter, Geometry of rank reduction, Phys. Rev.D 72 (2005) 026001 [hep-th/0504117] [INSPIRE].

  32. [32]

    Z. Guralnik and J. Troost, Aspects of gauge theory on commutative and noncommutative tori, JHEP05 (2001) 022 [hep-th/0103168] [INSPIRE].

  33. [33]

    F.J. de Anda and S.F. King, SU(3) × SO(10) in 6d, JHEP10 (2018) 128 [arXiv:1807.07078] [INSPIRE].

  34. [34]

    K. Saraikin, Comments on the Morita equivalence, J. Exp. Theor. Phys.91 (2000) 653 [Zh. Eksp. Teor. Fiz.118 (2000) 755] [hep-th/0005138] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Correspondence to Francisco J. de Anda.

Additional information

ArXiv ePrint: 1911.11781

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aranda, A., de Anda, F.J. & King, S.F. Gauge-flavon unification. J. High Energ. Phys. 2020, 12 (2020).

Download citation


  • Field Theories in Higher Dimensions
  • Quark Masses and SM Parameters
  • Beyond Standard Model
  • Gauge Symmetry