Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A cosmological Higgs collider

  • 30 Accesses

Abstract

The quantum fluctuations of the Higgs field during inflation could be a source of primordial density perturbations through Higgs-dependent inflaton decay. By measuring primordial non-Gaussianities, this so-called Higgs-modulated reheating scenario provides us a unique chance to probe Higgs interactions at extremely high energy scale, which we call the Cosmological Higgs Collider (CHC). We realize CHC in a simple scenario where the inflaton decays into Higgs-portal scalars, taking account of the decay of the Higgs fluctuation amplitude after inflation. We also calculate the CHC signals of Standard Model particles, namely their imprints in the squeezed bispectrum, which can be naturally large. The concept of CHC can be straightforwardly generalized to cosmological isocurvature colliders with other types of isocurvature perturbations.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    Particle Data Group collaboration, Review of particle physics, Phys. Rev.D 98 (2018) 030001 [INSPIRE].

  2. [2]

    CEPC Study Group collaboration, CEPC conceptual design report: volume 2 — physics & detector, arXiv:1811.10545 [INSPIRE].

  3. [3]

    P. Bambade et al., The International Linear Collider: a global project, arXiv:1903.01629 [INSPIRE].

  4. [4]

    FCC collaboration, FCC-ee: the lepton collider, Eur. Phys. J. ST228 (2019) 261 [INSPIRE].

  5. [5]

    X. Chen, Primordial non-Gaussianities from inflation models, Adv. Astron.2010 (2010) 638979 [arXiv:1002.1416] [INSPIRE].

  6. [6]

    Y. Wang, Inflation, cosmic perturbations and non-Gaussianities, Commun. Theor. Phys.62 (2014) 109 [arXiv:1303.1523] [INSPIRE].

  7. [7]

    D. Baumann and L. McAllister, Inflation and string theory, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, U.K. (2015) [arXiv:1404.2601] [INSPIRE].

  8. [8]

    X. Chen and Y. Wang, Large non-Gaussianities with intermediate shapes from quasi-single field inflation, Phys. Rev.D 81 (2010) 063511 [arXiv:0909.0496] [INSPIRE].

  9. [9]

    X. Chen and Y. Wang, Quasi-single field inflation and non-Gaussianities, JCAP04 (2010) 027 [arXiv:0911.3380] [INSPIRE].

  10. [10]

    D. Baumann and D. Green, Signatures of supersymmetry from the early universe, Phys. Rev.D 85 (2012) 103520 [arXiv:1109.0292] [INSPIRE].

  11. [11]

    T. Noumi, M. Yamaguchi and D. Yokoyama, Effective field theory approach to quasi-single field inflation and effects of heavy fields, JHEP06 (2013) 051 [arXiv:1211.1624] [INSPIRE].

  12. [12]

    N. Arkani-Hamed and J. Maldacena, Cosmological collider physics, arXiv:1503.08043 [INSPIRE].

  13. [13]

    H. Lee, D. Baumann and G.L. Pimentel, Non-Gaussianity as a particle detector, JHEP12 (2016) 040 [arXiv:1607.03735] [INSPIRE].

  14. [14]

    D. Baumann, G. Goon, H. Lee and G.L. Pimentel, Partially massless fields during inflation, JHEP04 (2018) 140 [arXiv:1712.06624] [INSPIRE].

  15. [15]

    X. Chen, Primordial features as evidence for inflation, JCAP01 (2012) 038 [arXiv:1104.1323] [INSPIRE].

  16. [16]

    X. Chen, Fingerprints of primordial universe paradigms as features in density perturbations, Phys. Lett.B 706 (2011) 111 [arXiv:1106.1635] [INSPIRE].

  17. [17]

    X. Chen, M.H. Namjoo and Y. Wang, Models of the primordial standard clock, JCAP02 (2015) 027 [arXiv:1411.2349] [INSPIRE].

  18. [18]

    X. Chen, M.H. Namjoo and Y. Wang, Quantum primordial standard clocks, JCAP02 (2016) 013 [arXiv:1509.03930] [INSPIRE].

  19. [19]

    X. Chen, A. Loeb and Z.-Z. Xianyu, Unique fingerprints of alternatives to inflation in the primordial power spectrum, Phys. Rev. Lett.122 (2019) 121301 [arXiv:1809.02603] [INSPIRE].

  20. [20]

    X. Chen, Y. Wang and Z.-Z. Xianyu, Loop corrections to Standard Model fields in inflation, JHEP08 (2016) 051 [arXiv:1604.07841] [INSPIRE].

  21. [21]

    X. Chen, Y. Wang and Z.-Z. Xianyu, Standard Model background of the cosmological collider, Phys. Rev. Lett.118 (2017) 261302 [arXiv:1610.06597] [INSPIRE].

  22. [22]

    X. Chen, Y. Wang and Z.-Z. Xianyu, Standard Model mass spectrum in inflationary universe, JHEP04 (2017) 058 [arXiv:1612.08122] [INSPIRE].

  23. [23]

    S. Kumar and R. Sundrum, Heavy-lifting of gauge theories by cosmic inflation, JHEP05 (2018) 011 [arXiv:1711.03988] [INSPIRE].

  24. [24]

    X. Chen, Y. Wang and Z.-Z. Xianyu, Neutrino signatures in primordial non-Gaussianities, JHEP09 (2018) 022 [arXiv:1805.02656] [INSPIRE].

  25. [25]

    S. Kumar and R. Sundrum, Seeing higher-dimensional grand unification in primordial non-Gaussianities, JHEP04 (2019) 120 [arXiv:1811.11200] [INSPIRE].

  26. [26]

    G. Dvali, A. Gruzinov and M. Zaldarriaga, A new mechanism for generating density perturbations from inflation, Phys. Rev.D 69 (2004) 023505 [astro-ph/0303591] [INSPIRE].

  27. [27]

    L. Kofman, Probing string theory with modulated cosmological fluctuations, astro-ph/0303614 [INSPIRE].

  28. [28]

    T. Suyama and M. Yamaguchi, Non-Gaussianity in the modulated reheating scenario, Phys. Rev.D 77 (2008) 023505 [arXiv:0709.2545] [INSPIRE].

  29. [29]

    K. Ichikawa, T. Suyama, T. Takahashi and M. Yamaguchi, Primordial curvature fluctuation and its non-Gaussianity in models with modulated reheating, Phys. Rev.D 78 (2008) 063545 [arXiv:0807.3988] [INSPIRE].

  30. [30]

    K.-Y. Choi and Q.-G. Huang, Can the Standard Model Higgs boson seed the formation of structures in our universe?, Phys. Rev.D 87 (2013) 043501 [arXiv:1209.2277] [INSPIRE].

  31. [31]

    A. De Simone, H. Perrier and A. Riotto, Non-Gaussianities from the Standard Model Higgs, JCAP01 (2013) 037 [arXiv:1210.6618] [INSPIRE].

  32. [32]

    Y.-F. Cai, Y.-C. Chang, P. Chen, D.A. Easson and T. Qiu, Planck constraints on Higgs modulated reheating of renormalization group improved inflation, Phys. Rev.D 88 (2013) 083508 [arXiv:1304.6938] [INSPIRE].

  33. [33]

    A.A. Starobinsky, Multicomponent de Sitter (inflationary) stages and the generation of perturbations, JETP Lett.42 (1985) 152 [Pisma Zh. Eksp. Teor. Fiz.42 (1985) 124] [INSPIRE].

  34. [34]

    M. Sasaki and E.D. Stewart, A general analytic formula for the spectral index of the density perturbations produced during inflation, Prog. Theor. Phys.95 (1996) 71 [astro-ph/9507001] [INSPIRE].

  35. [35]

    D.H. Lyth, K.A. Malik and M. Sasaki, A general proof of the conservation of the curvature perturbation, JCAP05 (2005) 004 [astro-ph/0411220] [INSPIRE].

  36. [36]

    P.D. Meerburg and E. Pajer, Observational constraints on gauge field production in axion inflation, JCAP02 (2013) 017 [arXiv:1203.6076] [INSPIRE].

  37. [37]

    A.D. Linde, Hybrid inflation, Phys. Rev.D 49 (1994) 748 [astro-ph/9307002] [INSPIRE].

  38. [38]

    Y. Shtanov, J.H. Traschen and R.H. Brandenberger, Universe reheating after inflation, Phys. Rev.D 51 (1995) 5438 [hep-ph/9407247] [INSPIRE].

  39. [39]

    L. Kofman, A.D. Linde and A.A. Starobinsky, Reheating after inflation, Phys. Rev. Lett.73 (1994) 3195 [hep-th/9405187] [INSPIRE].

  40. [40]

    G.R. Dvali and S.-H. Henry Tye, Brane inflation, Phys. Lett.B 450 (1999) 72 [hep-ph/9812483] [INSPIRE].

  41. [41]

    X. Chen, Y. Wang and Z.-Z. Xianyu, Schwinger-Keldysh diagrammatics for primordial perturbations, JCAP12 (2017) 006 [arXiv:1703.10166] [INSPIRE].

  42. [42]

    K. Enqvist and M.S. Sloth, Adiabatic CMB perturbations in pre-big bang string cosmology, Nucl. Phys.B 626 (2002) 395 [hep-ph/0109214] [INSPIRE].

  43. [43]

    D.H. Lyth and D. Wands, Generating the curvature perturbation without an inflaton, Phys. Lett.B 524 (2002) 5 [hep-ph/0110002] [INSPIRE].

  44. [44]

    T. Moroi and T. Takahashi, Effects of cosmological moduli fields on cosmic microwave background, Phys. Lett.B 522 (2001) 215 [Erratum ibid.B 539 (2002) 303] [hep-ph/0110096] [INSPIRE].

  45. [45]

    M. Sasaki, Multi-brid inflation and non-Gaussianity, Prog. Theor. Phys.120 (2008) 159 [arXiv:0805.0974] [INSPIRE].

  46. [46]

    Q.-G. Huang, A geometric description of the non-Gaussianity generated at the end of multi-field inflation, JCAP06 (2009) 035 [arXiv:0904.2649] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Correspondence to Zhong-Zhi Xianyu.

Additional information

ArXiv ePrint: 1907.07390

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, S., Wang, Y. & Xianyu, Z. A cosmological Higgs collider. J. High Energ. Phys. 2020, 11 (2020). https://doi.org/10.1007/JHEP02(2020)011

Download citation

Keywords

  • Cosmology of Theories beyond the SM
  • Higgs Physics