A cosmological Higgs collider

Abstract

The quantum fluctuations of the Higgs field during inflation could be a source of primordial density perturbations through Higgs-dependent inflaton decay. By measuring primordial non-Gaussianities, this so-called Higgs-modulated reheating scenario provides us a unique chance to probe Higgs interactions at extremely high energy scale, which we call the Cosmological Higgs Collider (CHC). We realize CHC in a simple scenario where the inflaton decays into Higgs-portal scalars, taking account of the decay of the Higgs fluctuation amplitude after inflation. We also calculate the CHC signals of Standard Model particles, namely their imprints in the squeezed bispectrum, which can be naturally large. The concept of CHC can be straightforwardly generalized to cosmological isocurvature colliders with other types of isocurvature perturbations.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].

  2. [2]

    CEPC Study Group collaboration, CEPC conceptual design report: volume 2 — physics & detector, arXiv:1811.10545 [INSPIRE].

  3. [3]

    P. Bambade et al., The International Linear Collider: a global project, arXiv:1903.01629 [INSPIRE].

  4. [4]

    FCC collaboration, FCC-ee: the lepton collider, Eur. Phys. J. ST 228 (2019) 261 [INSPIRE].

  5. [5]

    X. Chen, Primordial non-Gaussianities from inflation models, Adv. Astron. 2010 (2010) 638979 [arXiv:1002.1416] [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    Y. Wang, Inflation, cosmic perturbations and non-Gaussianities, Commun. Theor. Phys. 62 (2014) 109 [arXiv:1303.1523] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  7. [7]

    D. Baumann and L. McAllister, Inflation and string theory, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, U.K. (2015) [arXiv:1404.2601] [INSPIRE].

  8. [8]

    X. Chen and Y. Wang, Large non-Gaussianities with intermediate shapes from quasi-single field inflation, Phys. Rev. D 81 (2010) 063511 [arXiv:0909.0496] [INSPIRE].

  9. [9]

    X. Chen and Y. Wang, Quasi-single field inflation and non-Gaussianities, JCAP 04 (2010) 027 [arXiv:0911.3380] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    D. Baumann and D. Green, Signatures of supersymmetry from the early universe, Phys. Rev. D 85 (2012) 103520 [arXiv:1109.0292] [INSPIRE].

    ADS  Google Scholar 

  11. [11]

    T. Noumi, M. Yamaguchi and D. Yokoyama, Effective field theory approach to quasi-single field inflation and effects of heavy fields, JHEP 06 (2013) 051 [arXiv:1211.1624] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  12. [12]

    N. Arkani-Hamed and J. Maldacena, Cosmological collider physics, arXiv:1503.08043 [INSPIRE].

  13. [13]

    H. Lee, D. Baumann and G.L. Pimentel, Non-Gaussianity as a particle detector, JHEP 12 (2016) 040 [arXiv:1607.03735] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    D. Baumann, G. Goon, H. Lee and G.L. Pimentel, Partially massless fields during inflation, JHEP 04 (2018) 140 [arXiv:1712.06624] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. [15]

    X. Chen, Primordial features as evidence for inflation, JCAP 01 (2012) 038 [arXiv:1104.1323] [INSPIRE].

    Article  Google Scholar 

  16. [16]

    X. Chen, Fingerprints of primordial universe paradigms as features in density perturbations, Phys. Lett. B 706 (2011) 111 [arXiv:1106.1635] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    X. Chen, M.H. Namjoo and Y. Wang, Models of the primordial standard clock, JCAP 02 (2015) 027 [arXiv:1411.2349] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    X. Chen, M.H. Namjoo and Y. Wang, Quantum primordial standard clocks, JCAP 02 (2016) 013 [arXiv:1509.03930] [INSPIRE].

    ADS  Google Scholar 

  19. [19]

    X. Chen, A. Loeb and Z.-Z. Xianyu, Unique fingerprints of alternatives to inflation in the primordial power spectrum, Phys. Rev. Lett. 122 (2019) 121301 [arXiv:1809.02603] [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    X. Chen, Y. Wang and Z.-Z. Xianyu, Loop corrections to Standard Model fields in inflation, JHEP 08 (2016) 051 [arXiv:1604.07841] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  21. [21]

    X. Chen, Y. Wang and Z.-Z. Xianyu, Standard Model background of the cosmological collider, Phys. Rev. Lett. 118 (2017) 261302 [arXiv:1610.06597] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    X. Chen, Y. Wang and Z.-Z. Xianyu, Standard Model mass spectrum in inflationary universe, JHEP 04 (2017) 058 [arXiv:1612.08122] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  23. [23]

    S. Kumar and R. Sundrum, Heavy-lifting of gauge theories by cosmic inflation, JHEP 05 (2018) 011 [arXiv:1711.03988] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  24. [24]

    X. Chen, Y. Wang and Z.-Z. Xianyu, Neutrino signatures in primordial non-Gaussianities, JHEP 09 (2018) 022 [arXiv:1805.02656] [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    S. Kumar and R. Sundrum, Seeing higher-dimensional grand unification in primordial non-Gaussianities, JHEP 04 (2019) 120 [arXiv:1811.11200] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  26. [26]

    G. Dvali, A. Gruzinov and M. Zaldarriaga, A new mechanism for generating density perturbations from inflation, Phys. Rev. D 69 (2004) 023505 [astro-ph/0303591] [INSPIRE].

  27. [27]

    L. Kofman, Probing string theory with modulated cosmological fluctuations, astro-ph/0303614 [INSPIRE].

  28. [28]

    T. Suyama and M. Yamaguchi, Non-Gaussianity in the modulated reheating scenario, Phys. Rev. D 77 (2008) 023505 [arXiv:0709.2545] [INSPIRE].

  29. [29]

    K. Ichikawa, T. Suyama, T. Takahashi and M. Yamaguchi, Primordial curvature fluctuation and its non-Gaussianity in models with modulated reheating, Phys. Rev. D 78 (2008) 063545 [arXiv:0807.3988] [INSPIRE].

  30. [30]

    K.-Y. Choi and Q.-G. Huang, Can the Standard Model Higgs boson seed the formation of structures in our universe?, Phys. Rev. D 87 (2013) 043501 [arXiv:1209.2277] [INSPIRE].

  31. [31]

    A. De Simone, H. Perrier and A. Riotto, Non-Gaussianities from the Standard Model Higgs, JCAP 01 (2013) 037 [arXiv:1210.6618] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  32. [32]

    Y.-F. Cai, Y.-C. Chang, P. Chen, D.A. Easson and T. Qiu, Planck constraints on Higgs modulated reheating of renormalization group improved inflation, Phys. Rev. D 88 (2013) 083508 [arXiv:1304.6938] [INSPIRE].

  33. [33]

    A.A. Starobinsky, Multicomponent de Sitter (inflationary) stages and the generation of perturbations, JETP Lett. 42 (1985) 152 [Pisma Zh. Eksp. Teor. Fiz. 42 (1985) 124] [INSPIRE].

  34. [34]

    M. Sasaki and E.D. Stewart, A general analytic formula for the spectral index of the density perturbations produced during inflation, Prog. Theor. Phys. 95 (1996) 71 [astro-ph/9507001] [INSPIRE].

  35. [35]

    D.H. Lyth, K.A. Malik and M. Sasaki, A general proof of the conservation of the curvature perturbation, JCAP 05 (2005) 004 [astro-ph/0411220] [INSPIRE].

  36. [36]

    P.D. Meerburg and E. Pajer, Observational constraints on gauge field production in axion inflation, JCAP 02 (2013) 017 [arXiv:1203.6076] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    A.D. Linde, Hybrid inflation, Phys. Rev. D 49 (1994) 748 [astro-ph/9307002] [INSPIRE].

  38. [38]

    Y. Shtanov, J.H. Traschen and R.H. Brandenberger, Universe reheating after inflation, Phys. Rev. D 51 (1995) 5438 [hep-ph/9407247] [INSPIRE].

  39. [39]

    L. Kofman, A.D. Linde and A.A. Starobinsky, Reheating after inflation, Phys. Rev. Lett. 73 (1994) 3195 [hep-th/9405187] [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    G.R. Dvali and S.-H. Henry Tye, Brane inflation, Phys. Lett. B 450 (1999) 72 [hep-ph/9812483] [INSPIRE].

  41. [41]

    X. Chen, Y. Wang and Z.-Z. Xianyu, Schwinger-Keldysh diagrammatics for primordial perturbations, JCAP 12 (2017) 006 [arXiv:1703.10166] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  42. [42]

    K. Enqvist and M.S. Sloth, Adiabatic CMB perturbations in pre-big bang string cosmology, Nucl. Phys. B 626 (2002) 395 [hep-ph/0109214] [INSPIRE].

  43. [43]

    D.H. Lyth and D. Wands, Generating the curvature perturbation without an inflaton, Phys. Lett. B 524 (2002) 5 [hep-ph/0110002] [INSPIRE].

  44. [44]

    T. Moroi and T. Takahashi, Effects of cosmological moduli fields on cosmic microwave background, Phys. Lett. B 522 (2001) 215 [Erratum ibid. B 539 (2002) 303] [hep-ph/0110096] [INSPIRE].

  45. [45]

    M. Sasaki, Multi-brid inflation and non-Gaussianity, Prog. Theor. Phys. 120 (2008) 159 [arXiv:0805.0974] [INSPIRE].

    ADS  Article  Google Scholar 

  46. [46]

    Q.-G. Huang, A geometric description of the non-Gaussianity generated at the end of multi-field inflation, JCAP 06 (2009) 035 [arXiv:0904.2649] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhong-Zhi Xianyu.

Additional information

ArXiv ePrint: 1907.07390

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, S., Wang, Y. & Xianyu, ZZ. A cosmological Higgs collider. J. High Energ. Phys. 2020, 11 (2020). https://doi.org/10.1007/JHEP02(2020)011

Download citation

Keywords

  • Cosmology of Theories beyond the SM
  • Higgs Physics