Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Modular invariant models of lepton masses at levels 4 and 5

  • 14 Accesses

Abstract

We explore alternative descriptions of the charged lepton sector in modular invariant models of lepton masses and mixing angles. In addition to the modulus, the symmetry breaking sector of our models includes ordinary flavons. Neutrino mass terms depend only on the modulus and are tailored to minimize the number of free parameters. The charged lepton Yukawa couplings rely upon the flavons alone. We build modular invariant models at levels 4 and 5, where neutrino masses are described both in terms of the Weinberg operator or through a type I seesaw mechanism. At level 4, our models reproduce the hierarchy among electron, muon and tau masses by letting the weights play the role of Froggatt-Nielsen charges. At level 5, our setup allows the treatment of left and right handed charged leptons on the same footing. We have optimized the free parameters of our models in order to match the experimental data, obtaining a good degree of compatibility and predictions for the absolute neutrino masses and the C P violating phases. At a more fundamental level, the whole lepton sector could be correctly described by the simultaneous presence of several moduli. Our examples are meant to make a first step in this direction.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    Y. Reyimuaji and A. Romanino, Can an unbroken flavour symmetry provide an approximate description of lepton masses and mixing?, JHEP03 (2018) 067 [arXiv:1801.10530] [INSPIRE].

  2. [2]

    G. Altarelli and F. Feruglio, Discrete flavor symmetries and models of neutrino mixing, Rev. Mod. Phys.82 (2010) 2701 [arXiv:1002.0211] [INSPIRE].

  3. [3]

    H. Ishimori et al., Non-Abelian discrete symmetries in particle physics, Prog. Theor. Phys. Suppl.183 (2010) 1 [arXiv:1003.3552] [INSPIRE].

  4. [4]

    D. Hernandez and A.Yu. Smirnov, Lepton mixing and discrete symmetries, Phys. Rev.D 86 (2012) 053014 [arXiv:1204.0445] [INSPIRE].

  5. [5]

    S.F. King and C. Luhn, Neutrino mass and mixing with discrete symmetry, Rept. Prog. Phys.76 (2013) 056201 [arXiv:1301.1340] [INSPIRE].

  6. [6]

    S.F. King et al., Neutrino mass and mixing: from theory to experiment, New J. Phys.16 (2014) 045018 [arXiv:1402.4271] [INSPIRE].

  7. [7]

    F. Feruglio, Pieces of the flavour puzzle, Eur. Phys. J.C 75 (2015) 373 [arXiv:1503.04071] [INSPIRE].

  8. [8]

    S.F. King, Unified models of neutrinos, flavour and CP-violation, Prog. Part. Nucl. Phys.94 (2017) 217 [arXiv:1701.04413] [INSPIRE].

  9. [9]

    C. Hagedorn, Theories of leptonic flavor, arXiv:1705.00684 [INSPIRE].

  10. [10]

    F. Feruglio, Are neutrino masses modular forms?, arXiv:1706.08749 [INSPIRE].

  11. [11]

    P.P. Novichkov, J.T. Penedo, S.T. Petcov and A.V. Titov, Generalised CP symmetry in modular-invariant models of flavour, JHEP07 (2019) 165 [arXiv:1905.11970] [INSPIRE].

  12. [12]

    T. Dent, CP violation and modular symmetries, Phys. Rev.D 64 (2001) 056005 [hep-ph/0105285] [INSPIRE].

  13. [13]

    T. Dent, On the modular invariance of mass eigenstates and CP-violation, JHEP12 (2001) 028 [hep-th/0111024] [INSPIRE].

  14. [14]

    A. Baur, H.P. Nilles, A. Trautner and P.K.S. Vaudrevange, Unification of flavor, CP and modular symmetries, Phys. Lett.B 795 (2019) 7 [arXiv:1901.03251] [INSPIRE].

  15. [15]

    A. Baur, H.P. Nilles, A. Trautner and P.K.S. Vaudrevange, A string theory of flavor and C P , Nucl. Phys.B 947 (2019) 114737 [arXiv:1908.00805] [INSPIRE].

  16. [16]

    S. Ferrara, D. Lüst and S. Theisen, Target Space modular invariance and low-energy couplings in orbifold compactifications, Phys. Lett.B 233 (1989) 147 [INSPIRE].

  17. [17]

    I. De Medeiros Varzielas, S.F. King and Y.-L. Zhou, Multiple modular symmetries as the origin of flavour, arXiv:1906.02208 [INSPIRE].

  18. [18]

    S. Hamidi and C. Vafa, Interactions on orbifolds, Nucl. Phys.B 279 (1987) 465 [INSPIRE].

  19. [19]

    L.J. Dixon, D. Friedan, E.J. Martinec and S.H. Shenker, The conformal field theory of orbifolds, Nucl. Phys.B 282 (1987) 13 [INSPIRE].

  20. [20]

    J. Lauer, J. Mas and H.P. Nilles, Duality and the role of nonperturbative effects on the world sheet, Phys. Lett.B 226 (1989) 251 [INSPIRE].

  21. [21]

    J. Lauer, J. Mas and H.P. Nilles, Twisted sector representations of discrete background symmetries for two-dimensional orbifolds, Nucl. Phys.B 351 (1991) 353 [INSPIRE].

  22. [22]

    J. Erler, D. Jungnickel and J. Lauer, Dependence of Yukawa couplings on the axionic background moduli of Z (N ) orbifolds, Phys. Rev.D 45 (1992) 3651 [INSPIRE].

  23. [23]

    D. Cremades, L.E. Ibáñez and F. Marchesano, Yukawa couplings in intersecting D-brane models, JHEP07 (2003) 038 [hep-th/0302105] [INSPIRE].

  24. [24]

    R. Blumenhagen, M. Cvetič, P. Langacker and G. Shiu, Toward realistic intersecting D-brane models, Ann. Rev. Nucl. Part. Sci.55 (2005) 71 [hep-th/0502005] [INSPIRE].

  25. [25]

    S.A. Abel and M.D. Goodsell, Realistic Yukawa couplings through instantons in intersecting brane worlds, JHEP10 (2007) 034 [hep-th/0612110] [INSPIRE].

  26. [26]

    R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional string compactifications with D-branes, orientifolds and fluxes, Phys. Rept.445 (2007) 1 [hep-th/0610327] [INSPIRE].

  27. [27]

    F. Marchesano, Progress in D-brane model building, Fortsch. Phys.55 (2007) 491 [hep-th/0702094] [INSPIRE].

  28. [28]

    I. Antoniadis, A. Kumar and B. Panda, Fermion wavefunctions in magnetized branes: theta identities and Yukawa couplings, Nucl. Phys.B 823 (2009) 116 [arXiv:0904.0910] [INSPIRE].

  29. [29]

    T. Kobayashi, S. Nagamoto and S. Uemura, Modular symmetry in magnetized/intersecting D-brane models, PTEP2017 (2017) 023B02 [arXiv:1608.06129] [INSPIRE].

  30. [30]

    D. Cremades, L.E. Ibáñez and F. Marchesano, Computing Yukawa couplings from magnetized extra dimensions, JHEP05 (2004) 079 [hep-th/0404229] [INSPIRE].

  31. [31]

    H. Abe, K.-S. Choi, T. Kobayashi and H. Ohki, Non-abelian discrete flavor symmetries from magnetized/intersecting brane models, Nucl. Phys.B 820 (2009) 317 [arXiv:0904.2631] [INSPIRE].

  32. [32]

    T. Kobayashi et al., Modular symmetry and non-Abelian discrete flavor symmetries in string compactification, Phys. Rev.D 97 (2018) 116002 [arXiv:1804.06644] [INSPIRE].

  33. [33]

    L.E. Ibáñez, Hierarchy of quark-lepton masses in orbifold superstring compactification, Phys. Lett.B 181 (1986) 269 [INSPIRE].

  34. [34]

    J.A. Casas, F. Gómez and C. Muñoz, Complete structure of Z (n) Yukawa couplings, Int. J. Mod. Phys.A 8 (1993) 455 [hep-th/9110060] [INSPIRE].

  35. [35]

    O. Lebedev, The CKM phase in heterotic orbifold models, Phys. Lett.B 521 (2001) 71 [hep-th/0108218] [INSPIRE].

  36. [36]

    T. Kobayashi and O. Lebedev, Heterotic Yukawa couplings and continuous Wilson lines, Phys. Lett.B 566 (2003) 164 [hep-th/0303009] [INSPIRE].

  37. [37]

    P. Brax and M. Chemtob, Flavor changing neutral current constraints on standard-like orbifold models, Phys. Rev.D 51 (1995) 6550 [hep-th/9411022] [INSPIRE].

  38. [38]

    P. Binetruy and E. Dudas, Dynamical mass matrices from effective superstring theories, Nucl. Phys.B 451 (1995) 31 [hep-ph/9505295] [INSPIRE].

  39. [39]

    E. Dudas, S. Pokorski and C.A. Savoy, Soft scalar masses in supergravity with horizontal U(1) − x gauge symmetry, Phys. Lett.B 369 (1996) 255 [hep-ph/9509410] [INSPIRE].

  40. [40]

    E. Dudas, Dynamical mass matrices from moduli fields, hep-ph/9602231 [INSPIRE].

  41. [41]

    G.K. Leontaris and N.D. Tracas, Modular weights, U(1)’s and mass matrices, Phys. Lett.B 419 (1998) 206 [hep-ph/9709510] [INSPIRE].

  42. [42]

    T. Kobayashi, K. Tanaka and T.H. Tatsuishi, Neutrino mixing from finite modular groups, Phys. Rev.D 98 (2018) 016004 [arXiv:1803.10391] [INSPIRE].

  43. [43]

    T. Kobayashi et al., Finite modular subgroups for fermion mass matrices and baryon/lepton number violation, Phys. Lett.B 794 (2019) 114 [arXiv:1812.11072] [INSPIRE].

  44. [44]

    J.C. Criado and F. Feruglio, Modular invariance faces precision neutrino data, SciPost Phys.5 (2018) 042 [arXiv:1807.01125] [INSPIRE].

  45. [45]

    T. Kobayashi et al., Modular A4invariance and neutrino mixing, JHEP11 (2018) 196 [arXiv:1808.03012] [INSPIRE].

  46. [46]

    P.P. Novichkov, S.T. Petcov and M. Tanimoto, Trimaximal neutrino mixing from modular A4invariance with residual symmetries, Phys. Lett.B 793 (2019) 247 [arXiv:1812.11289] [INSPIRE].

  47. [47]

    G.-J. Ding, S.F. King and X.-G. Liu, Modular A4symmetry models of neutrinos and charged leptons, JHEP09 (2019) 074 [arXiv:1907.11714] [INSPIRE].

  48. [48]

    J.T. Penedo and S.T. Petcov, Lepton masses and mixing from modular S4symmetry, Nucl. Phys.B 939 (2019) 292 [arXiv:1806.11040] [INSPIRE].

  49. [49]

    P.P. Novichkov, J.T. Penedo, S.T. Petcov and A.V. Titov, Modular S4models of lepton masses and mixing, JHEP04 (2019) 005 [arXiv:1811.04933] [INSPIRE].

  50. [50]

    S.F. King and Y.-L. Zhou, Trimaximal TM1 mixing with two modular S4groups, Phys. Rev.D 101 (2020) 015001 [arXiv:1908.02770] [INSPIRE].

  51. [51]

    P.P. Novichkov, J.T. Penedo, S.T. Petcov and A.V. Titov, Modular A5symmetry for flavour model building, JHEP04 (2019) 174 [arXiv:1812.02158] [INSPIRE].

  52. [52]

    G.-J. Ding, S.F. King and X.-G. Liu, Neutrino mass and mixing with A5modular symmetry, Phys. Rev.D 100 (2019) 115005 [arXiv:1903.12588] [INSPIRE].

  53. [53]

    H. Okada and M. Tanimoto, CP violation of quarks in A4modular invariance, Phys. Lett.B 791 (2019) 54 [arXiv:1812.09677] [INSPIRE].

  54. [54]

    H. Okada and M. Tanimoto, Towards unification of quark and lepton flavors in A4modular invariance, arXiv:1905.13421 [INSPIRE].

  55. [55]

    F.J. de Anda, S.F. King and E. Perdomo, SU(5) grand unified theory with A4modular symmetry, arXiv:1812.05620 [INSPIRE].

  56. [56]

    T. Kobayashi et al., Modular S3invariant flavor model in SU(5) GUT, arXiv:1906.10341 [INSPIRE].

  57. [57]

    S. Ferrara, D. Lüst, A.D. Shapere and S. Theisen, Modular invariance in supersymmetric field theories, Phys. Lett.B 225 (1989) 363 [INSPIRE].

  58. [58]

    X.-G. Liu and G.-J. Ding, Neutrino masses and mixing from double covering of finite modular groups, JHEP08 (2019) 134 [arXiv:1907.01488] [INSPIRE].

  59. [59]

    S. Antusch and V. Maurer, Running quark and lepton parameters at various scales, JHEP11 (2013) 115 [arXiv:1306.6879] [INSPIRE].

  60. [60]

    I. Esteban et al., Global analysis of three-flavour neutrino oscillations: synergies and tensions in the determination of θ23, δCPand the mass ordering, JHEP01 (2019) 106 [arXiv:1811.05487] [INSPIRE].

  61. [61]

    F. Bazzocchi, L. Merlo and S. Morisi, Fermion masses and mixings in a S(4)-based model, Nucl. Phys.B 816 (2009) 204 [arXiv:0901.2086] [INSPIRE].

  62. [62]

    G.-J. Ding, L.L. Everett and A.J. Stuart, Golden ratio neutrino mixing and A5 flavor symmetry, Nucl. Phys.B 857 (2012) 219 [arXiv:1110.1688] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Correspondence to Simon J. D. King.

Additional information

ArXiv ePrint: 1908.11867

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Criado, J.C., Feruglio, F. & King, S.J.D. Modular invariant models of lepton masses at levels 4 and 5. J. High Energ. Phys. 2020, 1 (2020). https://doi.org/10.1007/JHEP02(2020)001

Download citation

Keywords

  • Discrete Symmetries
  • Neutrino Physics